Production peformance analysis of coal bed methane, shale gas, and tight gas reservoirs with different well trajectories and completion techniques

Download
2013
Erturk, Mehmet Cihan
The large amount of produced oil and gas come from conventional resources all over the world and these resources are being depleted rapidly. This fact and the increasing oil and gas prices force the producing countries to find and search for new methods to recover more oil and gas. In order to meet the demand, the oil and gas industry has been turning towards to unconventional oil and gas reservoirs which become more popular every passing day. In recent years, they are seriously considered as supplementary to the conventional resources although these reservoirs cannot be produced at an economic rate or cannot produce economic volumes of oil and gas without assistance from massive stimulation treatments, special recovery processes or advanced technologies. The vast increase in demand for petroleum and gas has encouraged the new technological development and implementation. A wide range of technologies have been developed and deployed since 1980. With the wellbore technology, it is possible to make use of highly deviated wellbores, extended reach drilling, horizontal wells, multilateral wells and so on. All of the new technologies and a large number of new innovations have allowed development of increasingly complex economically marginal fields where shale gas and coal bed methane are found. In this study, primary target is to compare different production methods in order to obtain better well performance and improved production from different types of reservoirs. It is also be given some technical information regarding the challenges such as hydraulic fracturing and multilateral well configuration of the unconventional gas reservoir modeling and simulation. With the help of advances in algorithms, computer power, and integrated software, it is possible to apply and analyze the effect of the different well trajectories such as vertical, horizontal, and multilateral well on the future production performance of coal bed methane, shale gas, and tight gas reservoirs. A commercial simulator will be used to run the simulations and achieve the best-case scenarios. The study will lead the determination of optimum production methods for three different reservoirs that are explained above under the various circumstances and the understanding the production characteristic and profile of unconventional gas systems.

Suggestions

Pressure- and rate- transient analysis of the simulated single and multi-fractured horizontal wells drilled in shale gas reservoirs
Jafarlı, Tural; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2013)
Nowadays, the bigger portion of produced oil and gas come from conventional resources all over the globe and these resources are being depleted in a severe manner. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. In recent years, they are seriously considered as supplementary to the conventional resources although these reservoirs cannot be produced at an economic rate or canno...
Shale Gas: Current Perspectives and Future Prospects in Turkey and the World
Kök, Mustafa Verşan (2014-11-17)
With the increased natural gas prices and advancement in the horizontal drilling and hydraulic fracturing technology, there is a high interest in shale gas reservoirs in the world and in Turkey. However, gas production from shale gas reservoirs is quite different than conventional gas reservoirs because permeability in shale gas reservoirs is very low and production mechanism is different due to adsorbed gas and free gas together in these reservoirs. The aim of study is to clarify shale gas reservoirs in te...
An Experimental investigation of the shale inhibition properties of a quaternary amine compound
Taş, Baki Tuğrul; Sınayuç, Çağlar; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2013)
Depleting oil reserves and increased costs of the oil and gas recoveries have created the need to drill in challenging formations. When drilled through, shale formations in particular always generated a wide variety of problems if conventional water-based muds are used. Furthermore, the complexity and variations in shales have compounded the task of developing suitable drilling fluids. In light of these problems, the study of shale properties and their interactions with fluids will continue to be a muchneed...
Drilling of gas hydrate reservoirs
Merey, Sukru (2016-09-01)
With the consumption of conventional hydrocarbon reserves and advancement in drilling technology, recently there is a high interest in gas hydrates in the world. Due to lack of experience and sensitive nature of gas hydrates, drilling in gas hydrate reservoirs were considered as risky. However, recent drilling data in gas hydrates shows that successful drilling operations in gas hydrate reservoirs are possible with some special measurements such as specially designed drilling fluid and cement slurry etc. In...
Quantification of the uncertainties in shale gas reservoirs, a case study for Dadas shale formation
Topçu, Görkem Yusuf; Akın, Serkan; Department of Petroleum and Natural Gas Engineering (2013)
In the world of a decreasing conventional oil and gas resources and high energy prices, the unconventional gas resources has become a new focus of interest of the oil and gas industry. Especially, after the American shale gas revolution, both the industry and the economies are trying to explore and exploit their potential resources. Also, Turkey is one of the lucky countries that are known to have important shale gas resources at subsurface. Up to date, Dadas shale formation in the Southeastern Anatolian ba...
Citation Formats
M. C. Erturk, “Production peformance analysis of coal bed methane, shale gas, and tight gas reservoirs with different well trajectories and completion techniques,” M.S. - Master of Science, Middle East Technical University, 2013.