Solution approaches for flexible job shop scheduling problems

Download
2013
Balcı, Şerife Aytuğ
In this thesis, we consider a flexible job shop scheduling problem existing in discrete parts manufacturing industries. We are motivated by the production environment of Roketsan Missiles Industries Incorporation, operating at Turkish defense industry. Our objective is to minimize the total weighted completion times of the jobs in the system. We formulate the problem as a mixed integer linear program and find that our model could find optimal solutions only to small sized problem instances. For medium and large sized problem instances, we develop heuristic algorithms with high quality approximate solutions in reasonable solution time. Our proposed heuristic algorithm has hierarchical approach and benefits from optimization models and priority rules. We improve the heuristic method via best move with non-blocking strategy and design several experiments to test the performances. Our computational results have revealed that proposed heuristic algorithm can find high quality solutions to large sized instances very quickly.

Suggestions

Flexible assembly line design problem with fixed number of workstations
Barutçuoğlu, Şirin; Azizoğlu, Meral; Department of Industrial Engineering (2009)
In this thesis, we study a Flexible Assembly Line Design problem. We assume the task times and equipment costs are correlated in the sense that for all tasks the cheaper equipment gives no smaller task time. Given the cycle time and number of workstations we aim to find the assignment of tasks and equipments to the workstations that minimizes the total equipment cost. We study a special case of the problem with identical task times. For the general case, we develop a branch and bound algorithm that uses pow...
Bounding approaches for operation assignment and capacity allocation problem in flexible manufacturing systems
Özpeynirci, Selin; Azizoğlu, Meral (Elsevier BV, 2009-9)
This study considers an operation assignment and capacity allocation problem that arises in flexible manufacturing systems. Automated machines are assumed to have scarce time and tool magazine capacities and the tools are available in limited quantities. The aim is to select a subset of operations with maximum total weight. The weight of an operation may represent its profit, processing load, relative priority. Several upper bounding procedures have been taken into account. The results of computational test...
Capacity and tool allocation problem in flexible manufacturing systems
Bilgin, Selin; Azizoğlu, Meral (2005-12-01)
In this study, we consider capacity and tool allocation problem in flexible manufacturing environments. We assign the operations having priorities and processing requirements together with their required tools to a number of parallel machines having time and tool magazine capacities. We assume the number of available tools is limited and there is no partial operation assignments. Our aim is to maximize total weight over all assignments. We show that the problem is strongly NP-hard, and develop several appro...
JOB-SHOP SCHEDULING UNDER A NONRENEWABLE RESOURCE CONSTRAINT
TOKER, A; KONDAKCI, S; ERKIP, N (JSTOR, 1994-08-01)
In this paper we consider the job shop scheduling problem under a discrete non-renewable resource constraint. We assume that jobs have arbitrary processing times and resource requirements and there is a unit supply of the resource at each time period. We develop an approximation algorithm for this problem and empirically test its effectiveness in finding the minimum makespan schedules.
Capacity allocation problem in flexible manufacturing systems: branch and bound based approaches
ÖZPEYNİRCİ, SELİN; Azizoğlu, Meral (Informa UK Limited, 2009-01-01)
This study considers an operation assignment and capacity allocation problem that arises in flexible manufacturing systems. The machines have limited time and tool magazine capacities and the available tools are limited. Our objective is to maximise total weight of assigned operations. We develop a branch and bound algorithm that finds the optimal solutions and a beam search algorithm that finds high quality solutions in polynomial time.
Citation Formats
Ş. A. Balcı, “Solution approaches for flexible job shop scheduling problems,” M.S. - Master of Science, Middle East Technical University, 2013.