Fast feature extraction from 3D point cloud

Download
2013
Tarçın, Serkan
To teleoperate an unmanned vehicle a rich set of information should be gathered from surroundings.These systems use sensors which sends high amounts of data and processing the data in CPUs can be time consuming. Similarly, the algorithms that use the data may work slow because of the amount of the data. The solution is, preprocessing the data taken from the sensors on the vehicle and transmitting only the necessary parts or the results of the preprocessing. In this thesis a 180 degree laser scanner at the front end of an unmanned ground vehicle (UGV) tilted up and down on a horizontal axis and point clouds constructed from the surroundings. Instead of transmitting this data directly to the path planning or obstacle avoidance algorithms, a preprocessing stage has been run. In this preprocess rst, the points belonging to the ground plane have been detected and a simpli ed version of ground has been constructed then the obstacles have been detected. At last, a simpli ed ground plane as ground and simple primitive geometric shapes as obstacles have been sent to the path planning algorithms instead of sending the whole point cloud.

Suggestions

Interfacing SIMULINK/MATLAB with V-REP for analysis and control synthesis of a quadrotor
Khalilov, Javid; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
The primary factor that restricts the new control systems developments for air vehicles and the implementation of various sensors for advanced algorithms is the deficiency of quick and cost-effective physical environment. Flight tests are costly and requires a long preparation process. The aim of this thesis is to improve the simulator infrastructure which easily implementable to the AscTec Hummingbird Quadrotor that is located in the University’s lab and have interaction with the 3D physical environment. F...
Landing autopilot design for an UAV
Hanköylü, Merve; Çiloğlu, Tolga; Department of Electrical and Electronics Engineering (2011)
In this thesis, a landing autopilot for an UAV (IAI Pioneer RQ-2) is designed based on a nonlinear MATLAB model implemented with MATLAB/Simulink. In order to control the movement of the UAV at lateral and longitudinal axes, a speed, an altitude, a heading angle (direction) and a yaw rate controllers are designed. Controller design procedure is started with determination of different trim points of the aircraft. Next, the corresponding initial states and initial inputs are obtained. The model is linearized a...
Distributed Connectivity Restoration in Underwater Acoustic Sensor Networks via Depth Adjustment
Uzun, Erkay; ŞENEL, FATİH; Akkaya, Kemal; Yazıcı, Adnan (2015-06-12)
In most applications of Underwater Acoustic Sensor Networks, network connectivity is required for data exchange, data aggregation and relaying the data to a surface station. However, such connectivity can be lost due to failure of some sensor nodes which creates disruptions to the network operations. In this paper, we present two algorithms, namely BMR and DURA, which can detect network partitioning due to such node failures and re-establish network connectivity through controlled depth adjustment of nodes ...
Efficient and Versatile FPGA Acceleration of Support Counting for Stream Mining of Sequences and Frequent Itemsets
PROSTBOUCLE, Adrien; PETROT, Frederic; LEROY, Vincent; Alemdar, Hande (2017-01-01)
Stream processing has become extremely popular for analyzing huge volumes of data for a variety of applications, including IoT, social networks, retail, and software logs analysis. Streams of data are produced continuously and are mined to extract patterns characterizing the data. A class of data mining algorithm, called generate-and-test, produces a set of candidate patterns that are then evaluated over data. The main challenges of these algorithms are to achieve high throughput, low latency, and reduced p...
Efficient computation of strong partial transitive-closures
Toroslu, İsmail Hakkı (null; 1993-01-01)
The development of efficient algorithms to process the different forms of the transitive-closure (TC) queries within the context of large database systems has recently attracted a large volume of research efforts. In this paper, we present a new algorithm suitable for processing one of these forms, the so called strong partially-instantiated, in which one of the query's argument is instantiated to a set of constants and the processing of which yields a set of tuples that draw their values form both of the q...
Citation Formats
S. Tarçın, “Fast feature extraction from 3D point cloud,” M.S. - Master of Science, Middle East Technical University, 2013.