Failure analysis of thick composites

Download
2013
Erdem, Melek Esra
A three-dimensional finite element model is constructed to predict the failure of a hybrid and thick laminate containing bolted joints. The results of the simulation are compared with test results. The simulation comprises two main challenging steps. Firstly, for a realistic model, a 3D model is established with geometric nonlinearities and contact is takeninto account. The laminated composite model is constructed by 3D layered elements. The effect of different number of elements through the thickness is investigated. The failure prediction is the second part of the simulation study. Solutions with and without progressive failure approach are obtained and the effect of progressive failure analysis for an optimum simulation of failure is discussed. The most appropriate failure criteria to predict the failure of a thick composite structure is also investigated by considering various failure criteria. By comparing the test results with the ones found from the finite element analyses, the validity of the developed model and the chosen failure criteria are discussed.

Suggestions

Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Hybrid finite element for analysis of functionally graded beams
Sarıtaş, Afşin; Soydas, Ozan (2017-01-01)
A hybrid finite element model is presented, where stiffness and mass distributions over a beam with functionally graded material (FGM) are accurately modeled for both elastic and inelastic material responses. Von Mises and Drucker-Prager plasticity models are implemented for metallic and ceramic parts of FGM, respectively. Three-dimensional stress-strain relations are solved by a general closest point projection algorithm, and then condensed to the dimensions of the beam element. Numerical examples and veri...
Experimental and numerical failure analysis of advanced composite structures with holes
Atar, Mehmet Bilal; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
In this work, a design methodology for advanced composite structures with holes is presented. A three dimensional finite element model (FEM) is constructed to simulate such a structural application similar to weight-pockets in helicopter blades. Material properties are obtained by a material characterization study. The progressive failure method with FEM is used for the material degradation. In order to induce delamination in simulation, cohesive layers are implemented between composite layers. Results are ...
Investigation of crack growth along curved interfaces in L-shaped composite and polymers
Yavas, D.; Gozluklu, B.; Çöker, Demirkan (2014-01-01)
Delamination in unidirectional L-shaped composite laminates is modeled with two L-shaped polycarbonate plates bonded to each other where the effect of pre-crack length on the stability of the crack growth is investigated experimentally and computationally. In the experimental study, a unique testing fixture with a sliding platform is designed to create a pure vertical displacement to one of the arms. The full-field technique of photoelasticity is used in order to visualize isochromatic fringe pattern around...
Mechanical behaviour of Al2O3-ZrO2 minicomposite reinforced glass matrix optomechanical composite
Dericioğlu, Arcan Fehmi (Informa UK Limited, 2003-08-01)
To understand the effect of a 'mesh-structured reinforcement' on the optical and mechanical properties of optomechanical composites, a unidirectional Al2O3 fibre-ZrO2 matrix minicomposite reinforced glass matrix optomechanical composite has been fabricated. By regular alignment of the minicomposites in the glass matrix as part of the 'mesh structure' a high degree of optical transparency is obtained in the composite; this transparency is proportional to its 'optical window' regions. The mesh structured rein...
Citation Formats
M. E. Erdem, “Failure analysis of thick composites,” M.S. - Master of Science, Middle East Technical University, 2013.