Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Failure analysis of thick composites
Download
index.pdf
Date
2013
Author
Erdem, Melek Esra
Metadata
Show full item record
Item Usage Stats
190
views
178
downloads
Cite This
A three-dimensional finite element model is constructed to predict the failure of a hybrid and thick laminate containing bolted joints. The results of the simulation are compared with test results. The simulation comprises two main challenging steps. Firstly, for a realistic model, a 3D model is established with geometric nonlinearities and contact is takeninto account. The laminated composite model is constructed by 3D layered elements. The effect of different number of elements through the thickness is investigated. The failure prediction is the second part of the simulation study. Solutions with and without progressive failure approach are obtained and the effect of progressive failure analysis for an optimum simulation of failure is discussed. The most appropriate failure criteria to predict the failure of a thick composite structure is also investigated by considering various failure criteria. By comparing the test results with the ones found from the finite element analyses, the validity of the developed model and the chosen failure criteria are discussed.
Subject Keywords
Composite materials.
,
Laminated materials.
,
Failure analysis (Engineering).
,
Materials
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12615605/index.pdf
https://hdl.handle.net/11511/22399
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Experimental and numerical failure analysis of advanced composite structures with holes
Atar, Mehmet Bilal; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
In this work, a design methodology for advanced composite structures with holes is presented. A three dimensional finite element model (FEM) is constructed to simulate such a structural application similar to weight-pockets in helicopter blades. Material properties are obtained by a material characterization study. The progressive failure method with FEM is used for the material degradation. In order to induce delamination in simulation, cohesive layers are implemented between composite layers. Results are ...
Hybrid finite element for analysis of functionally graded beams
Sarıtaş, Afşin; Soydas, Ozan (2017-01-01)
A hybrid finite element model is presented, where stiffness and mass distributions over a beam with functionally graded material (FGM) are accurately modeled for both elastic and inelastic material responses. Von Mises and Drucker-Prager plasticity models are implemented for metallic and ceramic parts of FGM, respectively. Three-dimensional stress-strain relations are solved by a general closest point projection algorithm, and then condensed to the dimensions of the beam element. Numerical examples and veri...
Numerical investigation of stiffened composite panel into buckling and post buckling under combined loading
Akay, Erkan; Yaman, Yavuz; Department of Aerospace Engineering (2015)
This thesis presents the investigation of buckling and post buckling behaviour of stiffened thin walled laminated composite aerospace structures subjected to combined in-plane axial and shear loadings. Due to the fact that the state of stress developing especially in the post-buckling stage is quite complicated under the combined loading, the necessary computational model is usually based on Finite Element Modelling (FEM). In this study, after verifying the FEM methodology and completing the sensitivity stu...
Circumferentially cracked bimaterial hollow cylinder under mechanical and transient thermal loading
Kadıoğlu, Fevzi Suat (Informa UK Limited, 2006-12-01)
The analytical solution for the problem of a circumferential inner surface crack in an elastic, infinitely long composite hollow cylinder, made of two concentric perfectly bonded transversely isotropic cylinders is considered. Uniform axial loading and thermal loading in the form of a sudden cooling on the inner boundary are considered. Out of 10 material parameters involved, two bimaterial parameters and three material parameters for each layer upon which the stress intensity factor depends under uniform l...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. E. Erdem, “Failure analysis of thick composites,” M.S. - Master of Science, Middle East Technical University, 2013.