Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical investigation of stiffened composite panel into buckling and post buckling under combined loading
Download
index.pdf
Date
2015
Author
Akay, Erkan
Metadata
Show full item record
Item Usage Stats
321
views
186
downloads
Cite This
This thesis presents the investigation of buckling and post buckling behaviour of stiffened thin walled laminated composite aerospace structures subjected to combined in-plane axial and shear loadings. Due to the fact that the state of stress developing especially in the post-buckling stage is quite complicated under the combined loading, the necessary computational model is usually based on Finite Element Modelling (FEM). In this study, after verifying the FEM methodology and completing the sensitivity studies, the buckling and post buckling phenomenon are examined in order to see the effects of shear loading beside the axial compressive loading on a stiffened composite panel via linear and nonlinear analyses. The results show that under combined in-plane loading of a stiffened panel, additional shear loading beside the axial loading has an influence on the axially critical buckling load capability of the structure depending on the characteristic of the structure like ply orientation.
Subject Keywords
Composite materials.
,
Carbon composites.
,
Plates (Engineering).
,
Buckling (Mechanics.
URI
http://etd.lib.metu.edu.tr/upload/12619266/index.pdf
https://hdl.handle.net/11511/24939
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Simulation of Impact Induced Damage Process in a Carbon/Epoxy Composite Beam
Bozkurt, Mirac Onur; Çöker, Demirkan; Parnas, Kemal Levend (2018-12-01)
This paper presents numerical investigation of low-velocity impact (LVI) damage process in a unidirectional [0/90]s carbon/epoxy composite beam. Numerical simulations based on finite element method are conducted in ABAQUS/Explicit. A 3D model representing LVI experiments is generated. Matrix and fiber damage mechanisms are simulated by implementation of continuum damage mechanics based composite damage model with Hashin failure initiation criteria via a user-written VUMAT subroutine. Cohesive interfaces are...
Behavior of steel-concrete partially composite beams with channel type shear connectors
Baran, Eray; Topkaya, Cem (2014-06-01)
This paper summarizes the findings of an experimental study investigating the flexural behavior of partially composite beams incorporating channel type shear connectors. Results from monotonic load testing of four full-scale steel-concrete composite beams and a steel beam are presented. The main effort focused on identifying the variation of strength and stiffness properties of beams with various degrees of partial composite action. Behavior of channel shear connectors in the composite beam specimens is rel...
Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer (2008-01-01)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method considers the whole domain as one continuous computational domain, eliminating the necessity to check the starting and ending positions of the decomposition zone. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers that...
Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Progressive failure analysis of composite shells
Olcay, Yasemin; Darendeliler, Haluk; Department of Mechanical Engineering (2012)
The objective of this thesis is to investigate the progressive failure behavior of laminated fiber reinforced composite shell structures under different loading conditions. The laminates are assumed to be orthotropic and the first order shear deformation theory is applied. Three-node layered flat-shell elements are used in the analysis. To verify the numerical results obtained, experimental and analytical results found in literature are compared with the outputs of the study, and the comparison is found to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Akay, “Numerical investigation of stiffened composite panel into buckling and post buckling under combined loading,” M.S. - Master of Science, Middle East Technical University, 2015.