Construction of pyrrolo{1,2-a]pyranine structure by metal catalyzed cyclization on n-propargyl substituted pyrroles

Güven, Sinem
Pyrrolo[1,2-a]pyrazine is one of the isomers of pyrolodiazine family. Pyrrolo[1,2-a]pyrazine possesses a bicyclic heteroaromatic structure that have 10 electrons. It has various biological importances in synthetic chemistry; therefore, many different approaches to generate this skeleton have been developed so far. In this study, our prior aim was to develop a new synthetic methodology for the formation of pyrrolo[1,2-a]pyrazine moiety. In the first part of this focus, the starting compound, methyl 2-(2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-carboxylate was successfully synthesized, then the conversion of the ester group at the lower arm to the amine group was carried out. Heteroatom cyclization catalyzed by CuI afforded the desired substituted pyrrolo[1,2-a]pyrazine structure. In the second part, it was aimed to synthesize new compounds with unusual structures which are not described in the literature; namely, as pyrrolo[1,2-a]pyrazine N-oxide. In this direction, first pyrrole was submitted to Vilsmeier-Haack reaction to attach a formyl group at C-2. Substitution reaction then effectively gave 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde, which was a key molecule to synthesize the aldoxime. AuCl3 catalyzed cyclization of the corresponding oxime afforded pyrrolo[1,2-a]pyrazine N-oxide. In the next step, Sonogashira coupling reactions were carried out to obtain terminal alkynes (RC≡CR') starting from 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde. The aim of this part was to study the effect of aryl groups to the activated alkyl functional group by a metal catalyst. In this case, unexpected oxime-oxime transformation was observed, which is unprecedented in the literature