Metastatic behaviour of doxorubicin resistant MCF-7 breast cancer cells after Vimentin silencing

Tezcan, Okan
Chemotherapy is one of the common treatments in cancer therapy. The effectiveness of chemotherapy is limited by several factors one of which is the emergence of multidrug resistance (MDR). MDR is caused by the activity of diverse ATP binding cassette (ABC) transporters that pump drugs out of the cells. There are several drugs which have been used in treatment of cancer. One of them is doxorubicin that intercalates and inhibits DNA replication. However, doxorubicin has been found to cause development of MDR in tumors. It has been reported that there is a correlation between multidrug resistance and invasiveness of cancer cells. Vimentin is a type III intermediate filament protein that is expressed frequently in epithelial carcinomas correlating with invasiveness and also poor prognosis of cancer. There are several studies that have shown the connection between expression level of vimentin and invasiveness. In this study, MCF-7 cell line (MCF-7/S), which is a model cell line for human mammary carcinoma, and doxorubicin resistant MCF-7 cell line (MCF-7/Dox) were used. The resistant cell line was previously obtained by stepwise selection in our laboratory. The main purpose of this study was to investigate changes of metastatic behaviour in MCF-7/Dox cell line, after transient silencing of vimentin gene by siRNA. In conclusion, down-regulation of vimentin gene expression in MCF-7/Dox cell lines was expected to change the characteristics in migration and invasiveness shown by migration and invasion assays.
Citation Formats
O. Tezcan, “Metastatic behaviour of doxorubicin resistant MCF-7 breast cancer cells after Vimentin silencing,” M.S. - Master of Science, Middle East Technical University, 2013.