Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Vimentin silencing effect on invasive and migration characteristics of doxorubicin resistant MCF-7 cells
Date
2014-04-01
Author
Tezcan, Okan
Gündüz, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
256
views
0
downloads
Cite This
Chemotherapy is one of the well-known treatments in cancer therapy. The effectiveness of chemotherapy is limited by several factors one of which is the emergence of multidrug resistance (MDR). One of the major mechanisms of MDR is the activity of several ATP binding cassette (ABC) transporters that pump drugs out of the cells. Doxorubicin intercalates and inhibits DNA replication; it is a powerful chemotherapeutic agent. However, it causes development of MDR in tumor cells. Vimentin is a type III intermediate filament protein that is expressed frequently in epithelial carcinomas correlating with invasiveness and also poor prognosis of cancer. There are several studies that have shown the connection between expression level of vimentin and invasiveness of tumor cells. In this study, MCF-7 cell line which is a model for human mammary carcinoma, and a doxorubicin resistant subline (MCF-7/Dox) were used. The resistant subline was previously obtained by stepwise selection in our laboratory. In the resistant cells, high levels of vimentin expression were observed. The main purpose of this study was to investigate changes in invasive and migration characteristics of MCF-7/Dox cell line, after transient silencing of vimentin gene by specific siRNA. (C) 2014 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Cancer
,
Breast Cancer
,
MCF-7
,
Doxorubicin
,
Vimentin
,
Metastasis
,
Gene Silencing
,
MDR
URI
https://hdl.handle.net/11511/31340
Journal
BIOMEDICINE & PHARMACOTHERAPY
DOI
https://doi.org/10.1016/j.biopha.2014.01.006
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Metastatic behaviour of doxorubicin resistant MCF-7 breast cancer cells after Vimentin silencing
Tezcan, Okan; Gündüz, Ufuk; Department of Biology (2013)
Chemotherapy is one of the common treatments in cancer therapy. The effectiveness of chemotherapy is limited by several factors one of which is the emergence of multidrug resistance (MDR). MDR is caused by the activity of diverse ATP binding cassette (ABC) transporters that pump drugs out of the cells. There are several drugs which have been used in treatment of cancer. One of them is doxorubicin that intercalates and inhibits DNA replication. However, doxorubicin has been found to cause development of MDR ...
Menadione (Vitamin K3) and Doxorubicin loaded liposomes for enhanced anticancer effect by dual treatment
Akkad, Suzan; Keskin, Dilek; Özen, Can; Department of Biotechnology (2022-9-02)
Chemotherapy is the first line of cancer treatment, but due to its adverse effects, it is set to be limited. Therefore, liposomes are mainly extensively studied to be employed as nanocarriers as they are more advantageous than traditional therapy. They overcome the obstacle of cellular and tissue uptake and improve drugs’ bioavailability, biodistribution and pharmacokinetics. Doxorubicin, an anthracycline drug, is widely used to treat hematological malignancies and solid tumors, to ameliorate its usage a li...
Reversal of breast cancer resistance protein mediated multidrug resistance in MCF7 breast adenocarcinoma cell line
Urfalı, Çağrı; Gündüz, Ufuk; Department of Biology (2011)
Resistance to various chemotherapeutic agents is a major problem in success of cancer chemotherapy. One of the primary reasons of development of multidrug resistance (MDR) is the overexpression of ATP binding cassette (ABC) transporter proteins. Breast cancer resistance protein (BCRP) belongs to ABC transporter family and encoded by ABCG2 gene. BCRP is mainly expressed in MDR1 (P-glycoprotein) lacking breast cancer cells. Overexpression of BCRP leads to efflux of chemotherapeutic agents at higher rates, the...
Nanoparticles Based Drug Delivery Systems to Overcome Multidrug Resistance in Cancer The Role of Membrane Lipids Proteins and Carbohydrates
Özlüer, Özlem; Yalçın Azarkan, Serap; Gündüz, Ufuk (null; 2016-09-28)
Multidrug resistance (MDR) is a major problem in success of cancer chemotherapy on tumor cell growth, limits the prolonged and effective use of chemotherapy. The use of nanomaterial based drug carriers in cancer treatment offers exciting opportunities to enhance delivery of therapeutics to the tumor site (1). This is also known as targeted drug delivery providing differential distribution of drugs to the tumor site while significantly reducing the overall toxicity. Here, we critically discuss the role of th...
Targeted co-delivery of doxorubicin and TPGS to breast cancer cells by PLGA coated magnetic nanoparticles
Metin, Esra; Gündüz, Ufuk; Mutlu, Pelin; Department of Biotechnology (2017)
Although conventional chemotherapy is the most common method for cancer treatment, it has several side effects such as neuropathy, alopecia and cardiotoxicity. Since the drugs are given to body systemically, normal cells also effect as cancer cells. However, in recent years, targeted drug delivery has been developed to overcome these drawbacks.The targeting strategy can be changed depending on carrier types, but magnetic nanoparticles are commonly preferred due to their easy targetable features by using ext...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Tezcan and U. Gündüz, “Vimentin silencing effect on invasive and migration characteristics of doxorubicin resistant MCF-7 cells,”
BIOMEDICINE & PHARMACOTHERAPY
, pp. 357–364, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31340.