Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improving the efficiency of microwave power amplifiers without linearity degradation using load and bias tuning in a new configuration
Download
index.pdf
Date
2013
Author
Ronaghzadeh, Amin
Metadata
Show full item record
Item Usage Stats
316
views
167
downloads
Cite This
Advanced digital modulation schemes used in the wireless applications, result in the modulated RF signals with high peak to average power ratio which requires linear amplification. On the other hand, the demand for a longer talk time with less battery volume and weight, especially in hand-held radio units, necessitate more power efficient methods to be utilized in power amplifier design. But improved linearity and efficiency have always been contradicting requirements demanding innovative power amplifier and linearizer design techniques. Dynamically varying the load impedance and bias point of a transistor according to the varying envelope of the incoming RF signal also known as Dynamic Load Modulation (DLM) and Dynamic Supply Modulation (DSM), respectively, are two separate methods for improving the efficiency in power amplifier design. In this dissertation, a combination of both variable gate bias and tunable load concepts is applied in an amplifier structure consisting of two transistors in parallel. A novel computer aided design methodology is proposed for careful selection of the load and biasing points of the individual transistors. The method which is based on load-pull analysis performs sweeps on the gate bias voltages of the active devices and input drive level of the amplifier in order to obtain ranges of biases that result in the generation of IMD sweet spots. Following that, the amplifier is designed employing the load line theory and bias switching at the same time in order to enhance the efficiency in reduced drive levels while extending the output 1 dB compression point to higher values at higher drives. Tunable matching networks are implemented utilizing varactor stacks in a Π configuration at the input and output of the amplifier. The amplifier starts to operate in the first state where lowest possible bias levels are chosen for both of the transistors and the output matching network is adjusted to provide PAE matching. As approaching towards the higher output powers, the amplifier switches between different consecutive operational states per about 1 dB increment at output power. In this way, the maximum output P1dB can be attained from the amplifier. The operational states are selected among a bunch of possible states obtained from the load-pull analysis, based on providing smaller leaps in transition between states in PAE and gain curves. In order to validate the proposed design methodology, a 2.4 GHz medium-power amplifier is designed, fabricated and tested which demonstrates the feasibility of the proposed structure and design technique for power amplifier applications.
Subject Keywords
Power amplifiers
,
Microwave amplifiers
,
Microwave communication systems.
,
Wireless communication systems.
URI
http://etd.lib.metu.edu.tr/upload/12615761/index.pdf
https://hdl.handle.net/11511/22556
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Linearization of RF power amplifiers with memoryless baseband predistortion method
Kolcuoğlu, Turusan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2011)
In modern wireless communication systems, advanced modulation techniques are used to support more users by handling high data rates and to increase the utilization efficiency of the limited RF spectrum. These techniques are sensitive to the nonlinear distortions due to their high peak to average power ratios. Main source of nonlinear distortion in transmitter topologies are power amplifiers that determine the overall efficiency and linearity of the transmitter. To increase linearity without sacrificing effi...
Out-of-band radiation and CFO immunity of potential 5G multicarrier modulation schemes
Üçüncü, Ali Bulut; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2015)
In this study, generalized frequency division multiplexing (GFDM) and windowed cyclic prefix circular offset quadrature amplitude modulation (WCP-COQAM), which are candidate physical layer modulation schemes for the 5G systems, are compared to orthogonal frequency division multiplexing (OFDM) in terms of out-of-band (OOB) radiation levels and carrier frequency offset (CFO) immunity. GFDM and WCP- COQAM are shown to be superior to OFDM with respect to OOB emissions in some studies in literature. However, we c...
Development of a tuner topology for multiharmonic matching and implementation on tunable dual band power amplifier design
Kılıç, Hasan Hüseyin; Demir, Şimşek; Department of Electrical and Electronics Engineering (2018)
In this thesis work, the effect of multi-harmonic load matching on improving the efficiency of power amplifiers is investigated. Techniques of efficient power amplifier design are discussed and analyzed in terms of multi-harmonic matching. Several circuit topologies are evaluated for multi-harmonic matching by discussing the advantages and the limitations. Specifically, a detailed multi-harmonic analysis of the triple stub topology is presented. The already-known single frequency impedance matching capabili...
X-band high power GaN power amplifier design and implementation
Işık, Ali İlker; Demir, Şimşek; Department of Electrical and Electronics Engineering (2016)
High frequency power amplifiers play a crucial role in design, development and overall performance of wireless communication systems. Demanding requirements of the power amplifiers require improvements in output power, efficiency and bandwidth. GaN devices attract high frequency power amplifier designers due to the superior material characteristics of GaN. In this thesis, a power amplifier operating at X-band is designed and realized using a GaN discrete bare die transistor. It provides over 15 W output pow...
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ronaghzadeh, “Improving the efficiency of microwave power amplifiers without linearity degradation using load and bias tuning in a new configuration,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.