Improving the efficiency of microwave power amplifiers without linearity degradation using load and bias tuning in a new configuration

Ronaghzadeh, Amin
Advanced digital modulation schemes used in the wireless applications, result in the modulated RF signals with high peak to average power ratio which requires linear amplification. On the other hand, the demand for a longer talk time with less battery volume and weight, especially in hand-held radio units, necessitate more power efficient methods to be utilized in power amplifier design. But improved linearity and efficiency have always been contradicting requirements demanding innovative power amplifier and linearizer design techniques. Dynamically varying the load impedance and bias point of a transistor according to the varying envelope of the incoming RF signal also known as Dynamic Load Modulation (DLM) and Dynamic Supply Modulation (DSM), respectively, are two separate methods for improving the efficiency in power amplifier design. In this dissertation, a combination of both variable gate bias and tunable load concepts is applied in an amplifier structure consisting of two transistors in parallel. A novel computer aided design methodology is proposed for careful selection of the load and biasing points of the individual transistors. The method which is based on load-pull analysis performs sweeps on the gate bias voltages of the active devices and input drive level of the amplifier in order to obtain ranges of biases that result in the generation of IMD sweet spots. Following that, the amplifier is designed employing the load line theory and bias switching at the same time in order to enhance the efficiency in reduced drive levels while extending the output 1 dB compression point to higher values at higher drives. Tunable matching networks are implemented utilizing varactor stacks in a Π configuration at the input and output of the amplifier. The amplifier starts to operate in the first state where lowest possible bias levels are chosen for both of the transistors and the output matching network is adjusted to provide PAE matching. As approaching towards the higher output powers, the amplifier switches between different consecutive operational states per about 1 dB increment at output power. In this way, the maximum output P1dB can be attained from the amplifier. The operational states are selected among a bunch of possible states obtained from the load-pull analysis, based on providing smaller leaps in transition between states in PAE and gain curves. In order to validate the proposed design methodology, a 2.4 GHz medium-power amplifier is designed, fabricated and tested which demonstrates the feasibility of the proposed structure and design technique for power amplifier applications.


Linearization of RF power amplifiers with memoryless baseband predistortion method
Kolcuoğlu, Turusan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2011)
In modern wireless communication systems, advanced modulation techniques are used to support more users by handling high data rates and to increase the utilization efficiency of the limited RF spectrum. These techniques are sensitive to the nonlinear distortions due to their high peak to average power ratios. Main source of nonlinear distortion in transmitter topologies are power amplifiers that determine the overall efficiency and linearity of the transmitter. To increase linearity without sacrificing effi...
Out-of-band radiation and CFO immunity of potential 5G multicarrier modulation schemes
Üçüncü, Ali Bulut; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2015)
In this study, generalized frequency division multiplexing (GFDM) and windowed cyclic prefix circular offset quadrature amplitude modulation (WCP-COQAM), which are candidate physical layer modulation schemes for the 5G systems, are compared to orthogonal frequency division multiplexing (OFDM) in terms of out-of-band (OOB) radiation levels and carrier frequency offset (CFO) immunity. GFDM and WCP- COQAM are shown to be superior to OFDM with respect to OOB emissions in some studies in literature. However, we c...
Design and fabrication of a high gain, broadband microwave limiting amplifier module
Kılıç, Hasan Hüseyin; Demir, Şimşek; Department of Electrical and Electronics Engineering (2011)
Microwave limiting amplifiers are the key components of Instantaneous Frequency Measurement (IFM) systems. Limiting amplifiers provide constant output power level in a wide input dynamic range and over a broad frequency band. Moreover, limiting amplifiers are high gain devices that are used to bring very low input power levels to a constant output power level. Besides, limiting amplifiers are required to provide minimum small signal gain ripple in order not to reduce the sensitivity of the IFM system over t...
Detection of high order M-ARY QAM symbols under transmitter nonlinearities
Gülgün, Ziya; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2018)
We will investigate the nonlinear effects of power amplifiers on large constellation Quadrature Amplitude Modulation (QAM) in this study. A more than potential feat to enhance transmission rates in next generation wireless networks is high order QAM along with mm-wave transmission. Meanwhile, different types of nonlinearities in the transmitter side may hamper the transmitter rate and decrease receiver performances. From literature, outermost constellation points of QAM schemes are usually more adversely af...
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Citation Formats
A. Ronaghzadeh, “Improving the efficiency of microwave power amplifiers without linearity degradation using load and bias tuning in a new configuration,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.