Industry specific information content of financial ratios and financial distress modeling

Download
2013
Sayarı, Naz
The aim of this study is to investigate uncertainty levels of industries and explore those financial ratios that have the highest information content in determining the set of industry characteristics and use the most informative ratios selected in developing industry specific financial distress models. First, we employ factor analysis to determine the set of ratios that are most informative in specified industries. Second, we use entropy method as a Multiple Attribute Decision Making Model, to measure the level of uncertainty for these industries providing the framework of information theory and further specify those ratios that best reflect the industry specific uncertainty levels. Finally, we conduct logistic analysis and derive industry specific financial distress models to examine the predictive ability of financial ratios selected for each industry. Data for this study are obtained from Datastream for the period 1990-2011. The companies in the sample cover S&P 1500 firms that operate in 9 different industries. We reclassify the sample of firms in 4 industry groups according to their similarity in terms of accounting applications and derive industry specific financial distress models for these industry groups. The results show that financial ratios illustrate industry characteristics and that informativeness of ratios varies among sectors. We further observe that industry specific models predict financial distress better than the benchmark model and most of the ratios selected for each industry significantly contribute to the prediction of financial distress.

Suggestions

Overconfidence and bubbles in experimental asset markets
Şahin, Serkan; Küçükkaya, Halit Engin; Yılmaz, Özlem; Department of Business Administration (2013)
The aim of this study is to investigate uncertainty levels of industries and explore those financial ratios that have the highest information content in determining the set of industry characteristics and use the most informative ratios selected in developing industry specific financial distress models. First, we employ factor analysis to determine the set of ratios that are most informative in specified industries. Second, we use entropy method as a Multiple Attribute Decision Making Model, to measure the ...
Turkish SMEs’ use of financial statements for decision making
Aşcıgil, Semra Feriha (2017-03-01)
With a sample of 91 small Turkish firms, this study examines the factors that affect the use of financial statements, and the important information they contain, to make decisions. A principal components analysis identifies three key variables that determine the use of financial statements: experience, confidence, and knowledge. Logit analysis reveals that these three variables are significantly associated with whether Turkish business owners use financial statements to make decisions. These results can hel...
Stochastic modelling of biochemical networks and inference of model parameters
Purutçuoğlu Gazi, Vilda (Springer International Publishing, 2018-04-01)
The research and review papers presented in this volume provide an overview of the main issues, findings, and open questions in cutting-edge research on the fields of modeling, optimization and dynamics and their applications to biology, economics, energy, finance, industry, physics and psychology. Given the scientific relevance of the innovative applications and emerging issues they address, the contributions to this volume, written by some of the world’s leading experts in mathematics, economics and oth...
Optimum design and operation of 'a pump-piping-storage system'
Kaplan, H; Seireg, A; Dölen, Melik (Inderscience Publishers, 2001-01-01)
The study reported in this paper is undertaken to develop a computer simulation and an optimum design and operation strategy for a general storage system. The influence of various design parameters on the total operation cost of the system for a general delivery regime is also studied.
Continuous optimization applied in MARS for modern applications in finance, science and technology
Taylan, Pakize; Weber, Gerhard Wilhelm; Yerlikaya, Fatma (2008-05-23)
Multivariate adaptive regression spline (MARS) denotes a tool from statistics, important in classification and regression, with applicability in many areas of finance, science and technology. It is very useful in high dimensions and shows a great promise for fitting nonlinear multivariate functions. The MARS algorithm for estimating the model function consists of two subalgorithms. We propose not to use the second one (backward stepwise algorithm), but we construct a penalized residual sum of squares for a ...
Citation Formats
N. Sayarı, “Industry specific information content of financial ratios and financial distress modeling,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.