Uncertainties in reservoir limit test results : effect of input parameters

Download
2013
Altınbay, Gül
Reservoir parameters from the well test data are essential for reservoir management. Especially the identification the presence of the reservoir boundaries is important for an appraisal well testing. Providing reserve estimation, identifying new well locations and well placement and avoiding dry holes are some important outcomes. However more work on precision of the input data is needed before using the calculated well test parameters. Lots of ambiguity in the results obtained from well tests should be considered because these input data is inevitably subject to estimation errors. When used in well test interpretation, each of them also brings its own source of errors. In this thesis, uncertainties caused by input parameters (rock properties and fluid properties) and measured data (flow rate and pressure) is discussed rigorously. By using the determined input parameters an experimental design is constructed. To reduce the errors and increase the confidence intervals, some remedies are used such as analyses procedure (use of deconvolution), design of well tests (longer build up times and more than one build up period after sufficient flow period). After running the cases of the experimental design, the results are used to develop a linear predictive model to conduct sensitivity analysis. A real field example is presented to illustrate such errors and the applied remedies to field application.

Suggestions

Uncertainties in Reservoir limit test results - Effect of input parameters
Altinbay, G.; Akın, Serhat (2015-01-01)
Reservoir parameters from the well test data are essential for reservoir management. Especially the identification the presence of the reservoir boundaries is important for an appraisal well testing. Providing reserve estimation, identifying new well locations and well placement and avoiding dry holes are some important outcomes. However more work on precision of the input data is needed before using the calculated well test parameters. Lots of ambiguity in the results obtained from well tests should be con...
Development of expert system for artificial lift selection
Aliyev, Elshan; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2013)
During the reservoir production life reservoir pressure will decline. Also after water breakthrough the fluid column weight will increase as hydrostatic pressure will increase because of increased water and oil mixture density. In this case, reservoir pressure may not be enough to lift up the fluid from bottom to the surface. These reasons decrease or even may cause to stop flowing of fluids from the well. Some techniques must be applied to prevent the production decline. Artificial lift techniques are appl...
Use of voronoi gridding in well test design
Rahimov, Fuad; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2015)
One of the most efficient tools to accurately characterize the reservoir and its nature is well testing. In the literature, well testing sometimes is referred as Pressure Transient Analysis (PTA). For the development strategy of the field both technical and economic considerations are involved. In order to perform well testing, firstly it needs to be correctly designed, otherwise well testing will not yield reliable information about the reservoir. There are both analytical and numerical techniques for the ...
Numerical reservoir simulation of Alaşehir geothermal field
Aydın, Hakkı; Akın, Serhat (null; 2020-02-10)
Use of a comprehensive reservoir simulation is essential for an effective geothermal reservoir management. TOUGH2 has become a widely used simulator for this purpose. In this study, one of the most exploited geothermal fields in Turkey, Alaşehir geothermal field has been modeled by using TOUGH2 reservoir simulator. The study includes more than 100 wells, which are operated by 7 different developers. The total installed capacity of geothermal power plants in the field is 212 MWe, but additional capacity (98 ...
Thermal analysis applications in fossil fuel science - Literature survey
Kök, Mustafa Verşan (2002-01-01)
In this study, instances where thermal analysis techniques ( differential scanning calorimetry, thermogravimetry, differential thermal analysis, etc.) have been applied for fossil fuel characterisation and kinetics are reviewed. The scientific results presented clearly showed that thermal analysis is a well-established technique used in fossil fuel research area. The literature survey showed that thermal methods were important not only theoretically but also from a practical point of view.
Citation Formats
G. Altınbay, “ Uncertainties in reservoir limit test results : effect of input parameters,” M.S. - Master of Science, Middle East Technical University, 2013.