Genetic engineering of glycolytic pathway by disrupting glyceraldehyde-3-phosphate dehydrogenase gene in an industrial strain of streptomyces clavuligerus

Download
2013
Sertdemir, İbrahim
Streptomyces clavuligerus is a gram-positive, filamentous bacterium which produces several important secondary metabolites, including isopenicillin N, cephamycin C and the β-lactamase inhibitor, clavulanic acid (CA). CA is being used in combination with commonly used β-lactam antibiotics in order to fight against bacterial infections that are resistant to such antibiotics. Glyceraldehyde-3-phosphate (GAP) which is an intermediate product of glycolytic pathway is also used in CA biosynthesis as a crucial substrate. In this study, S. clavuligerus gap1 encoding GAP dehydrogenase enzyme was targeted to canalize all produced GAP to CA biosynthetic pathway. In this way, a significant improvement of CA yield of an industrial strain of S. clavuligerus was aimed at. In the present study, gap1 amplified from S. clavuligerus genome was cloned into E. coli, and then disrupted by kanamycin resistance gene (aphII) cassette. The construct was cloned into the industrial strain; however, any gap1-disrupted mutant resulted from homologous recombination couldn’t be obtained following plasmid curing/selection process. However, for such metabolic engineering studies, a faster and more efficient plasmid curing technique was developed for S. clavuligerus which can be used for selection of disrupted mutants. For further study, after gap1::aphII mutant of S. clavuligerus is obtained, its CA yield will be compared with that in the parental strain through fermentation experiments.

Suggestions

Increasing clavulanic acid production both in wild type and industrial streptomyces clavuligerus strains by amplification of positive regulator claR gene
Mutlu, Alper; Özcengiz, Gülay; Department of Biology (2012)
Streptomyces clavuligerus is a Gram-positive, filamentous bacterium which produces several important secondary metabolites, including isopenicillin N, cephamycin C and the β-lactamase inhibitor clavulanic acid. Among these compounds, clavulanic acid is being used in combination with commonly used β-lactam antibiotics in order to fight against bacterial infections that are resistant to such antibiotics. Among these combinations, Augmentin, composed of amoxicillin and clavulanic acid, is the most widely presc...
Quantitative expression analysis of the genes potentially involved in clavulanic acid overproduction in streptomyces clavuligerus
Aktaş, Caner; Özcengiz, Gülay; Department of Molecular Biology and Genetics (2018)
Streptomyces clavuligerus is the producer of the medically important β-lactam antibiotics, including cephamycin C (CC) and the potent β-lactamase inhibitor clavulanic acid. (CA). We have already undertaken an extensive comparative proteomic analysis by using both 2-DE-MALDI-MS and GeLC-MS approaches between an industrial CA overproducer, namely DEPA and the reference strain NRRL3585. In this context, we documented several differentially expressed (over- and under-represented) proteins accounting for high CA...
Integration of clavaminate synthase 2 gene into the chromosome of an industrial strain of Streptomyces Clavuligerus for enhanced clavulanic acid production
Vanlı, Güliz; Özcengiz, Gülay; Özkan, Melek; Department of Biotechnology (2010)
Streptomyces clavuligerus is a gram-positive, filamentous bacterium which has a great ability to produce secondary metabolites including isopenicillin N, cephamycin C and a beta-lactamase inhibitor clavulanic acid. Clavulanic acid (CA) which is a bicyclic beta-lactam, inhibits most of class A beta-lactamases by binding irreversibly to the serine hydroxyl group at the active center of beta-lactamases and resulting in the stable acyl-enzyme complexes. Clavaminate synthase (CAS) is one of the best characterize...
Proteomic analysis of two cephamycin c overproducer and an industrial clavulanic acid overproducer strains of streptomyces clavuligerus in comparison with the standard strain NRRL 3585
Ünsaldı, Eser; Özcengiz, Gülay; Department of Biology (2016)
In this study, two cephamycin C (CC) overproducers, Streptomyces clavuligerus AK39 and TB3585 strains, and a clavulanic acid (CA) overproducer S. clavuligerus DEPA were subjected to proteomic analysis to elucidate their differential protein expression profiles when compared to that of the standard strain S. clavuligerus NRRL 3585. Two proteomics approaches were employed: 2DE technique coupled with MALDI-TOF/MS and LC-MS/MS. By using two techniques, a total of 40 proteins were identified as upregulated while...
The regulatory effect of CcaR activator on the cephamycin C gene cluster of streptomyces clavuligerus
Kurt, Aslıhan; Özcengiz, Gülay; Department of Biology (2011)
Streptomyces clavuligerus produces industrially important secondary metabolites such as cephamycin C (a β-lactam antibiotic) and clavulanic acid (a potent β-lactamase inhibitor). Cephamycin C is active against penicillin-resistant bacteria due to presence of methoxyl group in C-7 position of cephalosporin nucleus. Clavulanic acid is prescribed in combination with β-lactams for treatment of various bacterial infections. Cephamycin C and clavulanic acid gene clusters form β-lactam supercluster in S. clavulige...
Citation Formats
İ. Sertdemir, “Genetic engineering of glycolytic pathway by disrupting glyceraldehyde-3-phosphate dehydrogenase gene in an industrial strain of streptomyces clavuligerus,” M.S. - Master of Science, Middle East Technical University, 2013.