Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Score test for testing etiologic heterogeneity in two-stage polytomous logistic regression
Download
index.pdf
Date
2013
Author
Karagülle, Saygın
Metadata
Show full item record
Item Usage Stats
224
views
114
downloads
Cite This
Two-stage polytomous logistic regression was proposed by Chatterjee (2004) as an effective tool to analyze epidemiological data when disease subtype information is available. In this modeling approach, a classic logistic regression is employed in the first level of the model. In the second level, the first-stage regression parameters are modeled as a function of some contrast parameters in a somehow similar spirit of an ANOVA model. This modeling also enables a practical way of estimating the heterogeneity in the probabilities of occurrence of different subtypes given a certain covariate set. However, the only way of testing for significance of the heterogeneity is the Wald test, so an alternative test has yet to be developed. In this context, the aim is to develop a score test and examine both the asymptotic and finite sample properties of the test. The simulation results showed that a minimum average expected subtype frequency, depending on the number of disease subtypes and total sample size, must be attained for the asymptotic distribution of the score test to hold. For the cases in which it is implausible to make asymptotic distribution assumption, through an extensive Monte Carlo simulation study, use of permutation test-based critical values were suggested.
Subject Keywords
Regression analysis.
,
Asymptotic distribution (Probability theory).
URI
http://etd.lib.metu.edu.tr/upload/12616496/index.pdf
https://hdl.handle.net/11511/23089
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
ANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATION
Bagherzadi, Negin; BÖRCEK, ALP ÖZGÜN; TOKDEMİR, GÜL; ÇAĞILTAY, NERGİZ; MARAŞ, HADİ HAKAN (2016-10-05)
Data mining algorithms have been applied in various fields of medicine to get insights about diagnosis and treatment of certain diseases. This gives rise to more research on personalized medicine as patient data can be utilized to predict outcomes of certain treatment procedures. Accordingly, this study aims to create a model to provide decision support for surgeons in Neurooncology surgery. For this purpose, we have analyzed clinical pathology records of Neurooncology patients through various classificatio...
Investigation and comparison of the preprocessing algorithms for microarrayanalysis for robust gene expression calculation and performance analysis of technical replicates
İLK, HAKKI GÖKHAN; İlk Dağ, Özlem; KONU KARAKAYALI, ÖZLEN; ÖZDAĞ, Hilal (2006-04-19)
Preprocessing of microarray data involves the necessary steps of background correction, normalization and summarization of the raw intensity data obtained from cDNA or oligo-arrays before statistical analysis. Several algorithms, namely RMA, dChip, and MAS5 exist for the preprocessing of Affymetrix microarray data. Previous studies have identified RMA as one of most accurate algorithms while MAS5 was characterized with lower accuracy and sensitivity levels. In this study, performance of different preprocess...
Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm
GÜNEY, YEŞİM; ARSLAN, OLÇAY; Gökalp Yavuz, Fulya (2022-09-01)
© 2022 Elsevier Inc.In the analysis of repeated or clustered measurements, it is crucial to determine the dynamics that affect the mean, variance, and correlations of the data, which will be possible using appropriate models. One of these models is the joint mean–covariance model, which is a multivariate heteroscedastic regression model with autoregressive covariance structures. In these models, parameter estimation is usually carried on under normality assumption, but the resulting estimators will be very ...
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Learning to rank web data using multivariate adaptive regression splines
Altınok, Gülşah; Batmaz, İnci; Karagöz, Pınar; Department of Statistics (2018)
A new trend, called learning to rank, has recently come to light in a wide variety of applications in Information Retrieval (IR), Natural Language Processing (NLP), and Data Mining (DM), to utilize machine learning techniques to automatically build the ranking models. Typical applications are document retrieval, expert search, definition search, collaborative filtering, question answering, and machine translation. In IR, there are three approaches used for ranking. The one is traditional model approaches su...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Karagülle, “Score test for testing etiologic heterogeneity in two-stage polytomous logistic regression,” M.S. - Master of Science, Middle East Technical University, 2013.