Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Marginalized transition random effect models for multivariate longitudinal binary data
Date
2007-03-01
Author
İlk Dağ, Özlem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
251
views
0
downloads
Cite This
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either via random effects or regressing on previous responses. In this paper, the authors extend the work of Heagerty to handle multivariate longitudinal binary response data using a triple of regression models that directly model the marginal mean response while taking into account dependence across time and across responses. Markov Chain Monte Carlo methods are used for inference. Data from the Iowa Youth and Families Project are used to illustrate the methods.
Subject Keywords
Statistics, Probability and Uncertainty
,
Statistics and Probability
URI
https://hdl.handle.net/11511/37404
Journal
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
DOI
https://doi.org/10.1002/cjs.5550350110
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models
Yozgatlıgil, Ceylan (Informa UK Limited, 2009-11-01)
Time series often contain observations of several variables and multivariate time series models are used to represent the relationship between these variables. There are many studies on vector autoregressive moving average (VARMA) models, but the representation of multiplicative seasonal VARMA models has not been seriously studied. In a multiplicative vector model, such as a seasonal VARMA model, the representation is not unique because of the noncommutative property of matrix multiplication. In this articl...
Regression analysis with a dtochastic design variable
Sazak, HS; Tiku, ML; İslam, Muhammed Qamarul (Wiley, 2006-04-01)
In regression models, the design variable has primarily been treated as a nonstochastic variable. In numerous situations, however, the design variable is stochastic. The estimation and hypothesis testing problems in such situations are considered. Real life examples are given.
Time series AR(1) model for short-tailed distributions
Akkaya, AD; Tiku, ML (Informa UK Limited, 2005-04-01)
The innovations in AR(1) models in time series have primarily been assumed to have a normal or long-tailed distributions. We consider short-tailed distributions (kurtosis less than 3) and derive modified maximum likelihood (MML) estimators. We show that the MML estimator of 0 is considerably more efficient than the commonly used least squares estimator and is also robust. This paper is essentially the first to achieve robustness to inliers and to various forms of short-tailedness in time series analysis.
Autoregressive models with short-tailed symmetric distributions
Akkaya, Ayşen (Informa UK Limited, 2008-01-01)
Symmetric short-tailed distributions do indeed occur in practice but have not received much attention particularly in the context of autoregression. We consider a family of such distributions and derive the modified maximum likelihood estimators of the parameters. We show that the estimators are efficient and robust. We develop hypothesis-testing procedures.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. İlk Dağ, “Marginalized transition random effect models for multivariate longitudinal binary data,”
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
, pp. 105–123, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37404.