Investigation of thermostable recombinant glucose isomerase production by sucrose utilizing escherichia coli

Download
2013
Akdağ, Burcu
The aim of this M.Sc. thesis is to investigate the production of thermostable glucose isomerase (GI; EC 5.3.1.5) by metabolically engineered sucrose-utilizing Escherichia coli in the designed molasses-based production media. Throughout the experiments the cell growth, sucrose consumption, recombinant GI activity, and by-product concentrations were analyzed. For this purpose, in the first part of this thesis, pRSETA plasmid carrying the thermostable GI encoding gene from Thermus thermophilus (xylA) was isolated and pRSETA::xylA plasmid was transformed into Escherichia coli W. Thereafter, the highest GI producing strain was selected using different carbon sources; and the selected strain was named as E. coli W-26. In the second part, the production of recombinant glucose isomerase was investigated firstly, in a program using laboratory scale shake-bioreactor experiments; and then by four sets of pilot scale bioreactor experiments. The recombinant GI production capacity of E. coli W-26 was tested on different carbon sources, i.e., glucose, sucrose, and molasses, at different concentrations in shake bioreactors. Growth in 32 g L-1 molasses-based medium resulted in higher recombinant GI activity and cell concentrations than those obtained in glucose and sucrose based media. Based on these results, four set of pilot scale semi-batch bioreactor vi experiment were designed where complex substrate molasses acted as the carbon and nitrogen source. In this context, four feeding strategies were designed using pulse-or exponential- feeding strategies, and the influences on the cell growth, GI production, and by-product formations were investigated with the same pre-determined specific growth rate at μ=0.05 h-1. The highest cell concentration was obtained as 18.4 g L-1 at t=26 h and the highest recombinant GI activity was achieved as 35264.5 U L-1 at t=16 h of bioprocess in BR4 operation by two molasses pulses with (NH4)2HPO4 and antibiotic addition at t=5 h and t=8 h; shifting to semi-batch operation at t=11 h by feeding molasses based medium with an exponential volumetric feeding rate calculated using the pre-determined μ=0.05 h-1.
Citation Formats
B. Akdağ, “Investigation of thermostable recombinant glucose isomerase production by sucrose utilizing escherichia coli,” M.S. - Master of Science, Middle East Technical University, 2013.