Evaluation of effective elastic properties of honeycomb sandwich structures by optimization involving modal behavior

Download
2014
Çınar, Okan
This thesis aims to develop an alternative approach which estimates the effective elastic properties of 2D orthotropic equivalent model of the honeycomb core material. For this purpose, 3D detailed finite element (FE) model of honeycomb structure, with the actual cell geometry and the face sheets, is used as the reference structure. Effective elastic properties of the equivalent 2D orthotropic model, representing the honeycomb core, are determined by means optimization. The objective function of the optimization is defined as the minimization of the error function expressed as the difference of the natural frequency results of certain number of modes of the reference 3D detailed FE model and the equivalent model of the sandwich structure with the honeycomb core. The effective material properties of the 2D orthotropic equivalent model of the honeycomb core are used as the design variables to optimize. The genetic algorithm that available in MATLAB Optimization Toolbox is used as optimizer, and MSC Nastran is used as the finite element solver to perform the modal analysis of the sandwich plates with honeycomb material as the core. Optimizer and the finite element solver are coupled by means of an interface code which is developed in the MATLAB environment. The studies in the literature, in which the effective material properties of the orthotropic equivalent model are estimated analytically, are also used for comparison purposes. Moreover, the effective material properties predicted analytically are used as the initial population of the optimization in genetic algorithm. The results show that developed approach predicts more accurate orthotropic effective material properties for the honeycomb than the present analytical models predict.

Suggestions

Estimation of thermally stimulated current in as grown TlGaSeS layered single crystals by multilayered perceptron neural network
Kucuk, Ilker; Yildirim, Tacettin; Hasanlı, Nızamı; Ozkan, Husnu (Elsevier BV, 2011-6)
This paper presents an artificial neural network approach to compute thermally stimulated current (TSC) in as-grown T1GaSeS layered single crystals. The experimental data have been obtained from TSC measurements. The network has been trained by a genetic algorithm (GA). The results confirmed that the proposed model could provide an accurate computation of the TSC.
Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Simulation of Directional Microphones in Digital Waveguide Mesh-Based Models of Room Acoustics
Hacıhabiboğlu, Hüseyin; Günel Kılıç, Banu (2010-02-01)
Digital waveguide mesh (DWM) models are time-domain numerical methods providing computationally simple solutions for wave propagation problems. They have been used in various acoustical modeling and audio synthesis applications including synthesis of musical instrument sounds and speech, and modeling of room acoustics. A successful model of room acoustics should be able to account for source and receiver directivity. Methods for the simulation of directional sources in DWM models were previously proposed. T...
Questioning Degree of Accuracy Offered by the Spectral Element Method in Computational Electromagnetics
Mahariq, I.; KURT, HAMZA; Kuzuoğlu, Mustafa (2015-07-01)
In this paper, a comparison amongst the spectral element method (SEM), the finite difference method (FDM), and the first-order finite element method (FEM) is presented. For the sake of consistency, the comparison is carried out on one-dimensional and two-dimensional boundary value problems based on the same measure of error in order to emphasize on the high accuracy gained by the SEM. Then, the deterioration in the accuracy of the SEM due to the elemental deformation is demonstrated. Following this, we try ...
Investigation of effect of design and operating parameters on acoustophoretic particle separation via 3D device-level simulations
Sahin, Mehmet Akif; ÇETİN, BARBAROS; Özer, Mehmet Bülent (Springer Science and Business Media LLC, 2019-12-16)
In the present study, a 3D device-level numerical model is implemented via finite element method to assess the effects of design and operating parameters on the separation performance of a microscale acoustofluidic device. Elastodynamic equations together with electromechanical coupling at the piezoelectric actuators for the stress field within the solid parts, Helmholtz equation for the acoustic field within fluid, and Navier-Stokes equations for the fluid flow are coupled for the simulations. Once the zer...
Citation Formats
O. Çınar, “Evaluation of effective elastic properties of honeycomb sandwich structures by optimization involving modal behavior,” M.S. - Master of Science, Middle East Technical University, 2014.