Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis and luminescence properties of tetraphenylethene-based small molecules used in organic light emitting diodes
Download
index.pdf
Date
2014
Author
Odabaş, Serhat
Metadata
Show full item record
Item Usage Stats
174
views
230
downloads
Cite This
Organic light emitting diodes (OLED) is an exciting new technology that attracted much attention to scientist for emissive technology. The basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting anode and metallic cathode. The important problems in luminescence is that, molecules aggregate in solid state that leads formation of excimers which results in emission quenching so that most of the luminescent materials show weak emissions in their solid forms. In order to overcome these problem studies has been carried out to either suppress the quenching of organic luminophores or to produce significant enhancements in their light emission upon aggregation. Aggregation-induced emission (AIE) materials seem to be promising emitters in the fabrication of electroluminescent devices with high efficiency. In this study, various tetraphenylethylene (TPE) emitters were synthesized and characterized for using in OLED applications. The TPE has been functionalized with various heterocyclic aromatic side groups. Photophysical, electrochemical, thermal and AIE properties of the compounds were studied. In addition, the synthesized molecules were examined for their.
Subject Keywords
Light emitting diodes.
,
Light-emitting electrochemical cells.
,
Photoluminescence.
,
Electroluminescent devices.
URI
http://etd.lib.metu.edu.tr/upload/12616793/index.pdf
https://hdl.handle.net/11511/23265
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis of novel diketopyrrole and selenophene containing nir absorbing polymers and their application in bulk-heterojunction solar cells
Öklem, Gülce; Günbaş, Emrullah Görkem; Department of Polymer Science and Technology (2017)
DPP-based conjugated polymers are recently used in organic light emitting diodes, electrochromic devices, organic field effect transistor and organic solar cell applications. Their advantageous properties, such as broad optical absorption in Near Infra Red (NIR) region, high charge carrier mobility and good film forming ability make them an excellent choice for generation of highly efficient solar cells. In this thesis, using donor-acceptor approach (D-A) we aimed to synthesize novel polymers with furan bas...
Synthesis, electrochemical characterization and organic solar cell applications of selenophene containing conjugated polymers
Yaşa, Mustafa; Toppare, Levent Kamil; Department of Polymer Science and Technology (2017)
Donor-Acceptor (D-A) type conjugated polymers are very popular for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. In literature, cyclopentadithiophene and its derivatives are commonly used electron donor units for organic solar cells. The incorporation of selenium atom into polymer backbone results in low band gap polymers as compared to sulfur and oxygen counterparts. In this study, selenophene containing conjugated po...
Design, syntheses and structure-property relationships of benzazole and isoindigo comprising conducting polymers/
Göker, Seza; Toppare, Levent Kamil; Department of Chemistry (2019)
Donor–acceptor (D–A) conjugated polymers have been widely used for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. Benzazole comprising conducting polymers are popular for the last few decades since they can be used as low-band-gap donor materials because of their strong intramolecular charge transfer characteristics and excellent photovoltaic performances. Strong electron-donating and withdrawing building blocks are nec...
Ensemble Monte Carlo simulation of quantum well infrared photodetectors
Memiş, Sema; Tomak, Mehmet; Department of Physics (2006)
Quantum well infrared photodetectors (QWIPs) have recently emerged as a potential alternative to the conventional detectors utilizing low bandgap semiconductors for infrared applications. There has been a considerable amount of experimental and theoretical work towards a better understanding of QWIP operation, whereas there is a lack of knowledge on the underlying physics. This work provides a better understanding of QWIP operation and underlying physics through particle simulations using the ensemble Monte...
Nanocrystal silicon based visible light emitting pin diodes
Anutgan, Mustafa; Katırcıoğlu, Bayram; Department of Physics (2010)
The production of low cost, large area display systems requires a light emitting material compatible with the standard silicon (Si) based complementary metal oxide semiconductor (CMOS) technology. The crystalline bulk Si is an indirect band semiconductor with very poor optical properties. On the other hand, hydrogenated amorphous Si (a-Si:H) based wide gap alloys exhibit strong visible photoluminescence (PL) at room temperature, owing to the release of the momentum conservation law. Still, the electrolumine...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Odabaş, “Synthesis and luminescence properties of tetraphenylethene-based small molecules used in organic light emitting diodes,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.