Ensemble Monte Carlo simulation of quantum well infrared photodetectors

Memiş, Sema
Quantum well infrared photodetectors (QWIPs) have recently emerged as a potential alternative to the conventional detectors utilizing low bandgap semiconductors for infrared applications. There has been a considerable amount of experimental and theoretical work towards a better understanding of QWIP operation, whereas there is a lack of knowledge on the underlying physics. This work provides a better understanding of QWIP operation and underlying physics through particle simulations using the ensemble Monte Carlo method. The simulator incorporates Gamma, L, and X valleys of conduction band as well as the size quantization in the quantum wells. In the course of this work, the dependence of QWIP performance on different device parameters is investigated for the optimization of the QWIP structure. The simulations on AlGaAs/GaAs QWIPs with the typical Al mole fraction of 0.3 have shown that the L valley of the conduction band plays an important role in the electron capture. A detailed investigation of the important scattering mechanisms indicates that the capture of the electrons through the L valley quantum well (L-QW) affects the device performance significantly when Gamma and L valley separation is small. The characteristics of electron capture have been further investigated by repeating the simulations on QWIPs for quantum well widths of 36 and 44 Å. The results suggest that the gain in the shorter well width device is considerably higher, which is attributed to the much longer lifetime of the photoexcited electrons as a result of lower capture probability (pc) in the device. The effects of the L-QW height on the QWIP characteristics have also been studied by artificially increasing this height from 63 to 95 meV in Al0.3Ga0.7As/GaAs QWIPs. The increase in the L valley (L-QW) height resulted in higher pc and lower gain due to high rate of capturing of these electrons when Gamma and L valley separation is small.


Ensemble monte carlo simulation of quantum well infrared photodetectors, and inp based long wavelength quantum well infrared photodetectors for thermal imaging
Cellek, Oray Orkun; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2006)
Quantum well infrared photodetectors (QWIP) utilize quantum wells of large bandgap materials to detect infrared radiation. When compared to conventional low bandgap LWIR photodetectors, the QWIP technology offers largest format thermal imagers with much better uniformity. The theoretical part of this study includes the development of a QWIP ensemble Monte Carlo simulator. Capture paths of electrons to quantum wells are simulated in detail. For standard AlGaAs/GaAs QWIPs, at medium and high E-fields L valley...
Fabrication and characterization of InP based quantum well infrared photodetectors
Torunoğlu, Gamze; Beşikci, Cengiz; Parlak, Mehmet; Department of Micro and Nanotechnology (2012)
Quantum Well Infrared Photodetectors (QWIPs) have the advantages of excellent uniformity and mature material properties. Thanks to these properties, large format and low cost QWIP focal plane arrays (FPAs) can be fabricated. The standard material system used for QWIP FPAs is AlGaAs/GaAs in the long wavelength infrared (LWIR) band. AlGaAs/GaAs material system has some disadvantages such as low quantum and conversion efficiencies under high frame rate and/or low background conditions. These limitations of the...
Photonic Crystal and Plasmonic Silicon-Based Light Sources
Makarova, Maria; Gong, Yiyang; Cheng, Szu-Lin; Nishi, Yoshio; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vuckovic, Jelena (2010-01-01)
Efficient silicon (Si)-compatible emitters can realize inexpensive light sources for a variety of applications. In this paper, we study both photonic crystal (PC) and plasmonic nanocavities that enhance the emission of Si-compatible materials. In particular, we examine the coupling of silicon nanocrystals (Si-NCs) to silicon nitride PC cavities and Si-NCs in silicon dioxide to plasmonic gratings, both for enhancement of emission in the visible wavelengths. In addition, we also observe the enhancement of the...
High performance near/short wavelength infrared megapixel InGaAs focal plane array fabrication development and new design proposals
Karaca, Utku; Kocaman, Serdar; Department of Electrical and Electronics Engineering (2018)
In0.53Ga0.47As is the most appropriate material system for Short Wavelength Infrared (SWIR) detection at ~1.7 μm cutoff wavelength with its relatively lower cost and high performance. Ultra-low dark current (~ nA/cm2) has been recently demonstrated in InGaAs photodetectors with planar type process by eliminating surface leakage current. Here, a fabrication procedure for planar InGaAs photodetectors with unique pixel isolation methods has been developed and ~10 nA/cm2 dark current density levels were obtaine...
Development of D -type fiber optic sensors for detection of refractive index variation in evanescent wave field /
Güleryüz, Burcu; Durucan, Caner; Aslan, Mustafa M.; Department of Metallurgical and Materials Engineering (2014)
The purpose of this study is to design, construct, develop and test D-type multimode fiber optic (F/O) sensors based on evanescent wave field sensing. A comprehensive work has been performed both theoretically and experimentally using a geometrical modification approach to improve the sensors response in different manners for detecting the refractive index (RI) variations and bio-molecular interactions in aqueous environment. In this study, the D-type F/O sensors performance was improved utilizing optical w...
Citation Formats
S. Memiş, “Ensemble Monte Carlo simulation of quantum well infrared photodetectors,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.