Effects of morphing on aeroelastic behavior of unmanned aerial vehicle wings

Ünlüsoy, Levent
Morphing aircraft technologies became the center of attention in aviation industry through the last decade. Although the intended optimization of the aircraft in terms of aerodynamics and/ or flight performance resulted in advantages like reduction in carbon dioxide emission and noise levels; that also brought some structural borne problems such as the possibly deteriorating change in the aeroelastic behavior of the structure. These structural problems should be clearly identified and attempted to be eliminated even at the conceptual design stages. This study intends to provide a broad view for the effects of morphing especially on the linear aeroelastic behavior of unmanned aerial vehicle wings. The study considered four different flight phases, namely take-off, climb, cruise, and loiter. An unmanned aerial vehicle wing, which was considered to be used in these four phases, was assumed to undergo chord, span, sweep and camber change with the help of certain morphing mechanisms such as the leading and the trailing edge mechanisms and the telescopic ribs and spars. Four different wing geometries were then obtained by considering the aircraft design requirements, aircraft performance requirements and aircraft structural requirements. Those four different wing shapes so obtained, which satisfy the minimum requirements for design, performance and structure and by no means optimum for any of those requirements, were studied for linear aeroelastic instability problems. An in-house computer program was developed and used for the prediction of the flutter and divergence speeds at different stages of the flight, in which the planform of the wings were changing. Aeroelastic models of morphing wings at different flight phases were developed as reduced order models having two-degrees-of-freedom and threedegrees-of-freedom. Theodorsen theory was used to represent the unsteady aerodynamics. Structural properties of the wings were obtained by conducting a series of finite element analyses on the developed equivalent plate models representing the planform of each morphing wing shapes. Two different classical solution methods were used during the aeroelastic analysis; k-method and pkmethod. Aeroelastic analyses conducted showed that the flutter and divergence speeds drastically changes up to 58 percent and 75 percent respectively among different wing configurations, when compared to the highest flutter and divergence speeds achieved. A series of analyses were conducted throughout this study, in order to identify the structural problems which arise due to the inclusion of the morphing phenomenon in aircraft design. It was realized that, the aeroelastic tailoring due to the morphing should be an essential part of the structural design procedure.


Effect of thickness-to-chord ratio on aerodynamics of non-slender delta wing
Sharifi Ghazijahani, Mohammad; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2018)
Flow characterization over delta wings have gained attention in recent decades due to their prevailing usage in designs of unmanned air vehicles (UAVs). In literature,only a few studies have reported wing thickness effect on both the aerodynamic performance and detailed flow structure over delta wings. In the present investigation, the effect of thickness-to-chord (t/C) ratio on aerodynamics of a non-slender delta wing with 45 degree sweep angle is characterized in a low-speed wind tunnel using laser illumi...
Effect of wing heating on flow structure of low swept delta wing
Şencan, Gizem; Yavuz, Mehmet Metin; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2016)
Micro Air Vehicles (MAVs), Unmanned Air Vehicles (UAVs) and Unmanned Combat Air Vehicles (UCAVs), which can be represented by simplified planforms including low swept delta wings, have many advantages in defense industry and aeronautical field. Thus, the aerodynamics of nonslender delta wings including development and application of different flow control techniques have been of considerable interest in recent years. In this study, it is aimed to investigate the effect of heating on the flow structure over...
Effect of thickness-to-chord ratio on flow structure of a low swept delta wing
Gülsaçan, Burak; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Low swept delta wings, which are the simplified planforms of Unmanned Air Vehicles (UAVs), Unmanned Combat Air Vehicles (UCAVs) and Micro Air Vehicles (MAVs), have drawn considerable attention in recent years. In order to characterize and improve the operational parameters of these vehicles, the flow physics over low swept delta wings and its control should be well understood. In literature, the effect of thickness-to-chord ratio (t/C) on aerodynamic performance of a delta wing was studied on high and moder...
Design and analysis of a hybrid trailing edge control surface of a fully morphing unmanned aerial vehicle wing
Tunçöz, İlhan Ozan; Yaman, Yavuz; Department of Aerospace Engineering (2015)
In this thesis, the design and analysis of a hybrid trailing edge control surface of a fully morphing unmanned aerial vehicle wing having the ability to perform both camber and decamber morphings were conducted. The design of the control surface was done by CATIA V5-6R2012 package program. Two distinct designs, so-called open cell and closed cell designs were initially analyzed via Finite Element Method by using the commercial software ANSYS Workbench v14.0 in in-vacuo condition. Several trade-off studies i...
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Citation Formats
L. Ünlüsoy, “Effects of morphing on aeroelastic behavior of unmanned aerial vehicle wings,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.