Experimental investigation of morphing wing aerodynamics by force measurements and particle image velocimetry

Download
2015
Özçakmak, Özge Sinem
Recently, new developments in on manufacturing technologies, aircraft materials, sensors, actuators, and other mechanisms raised the interest in morphing wings. Instead of conventional wings, which are optimized only for one flight condition, morphing wings can adapt themselves for different missions, mission segments and associated flight conditions. The focus of this thesis is the experimental analysis of a morphing wing, the planform and airfoil shapes that were made available from a separate numerical study. Four half wing models, one of which is the base model, are manufactured separately and load cell measurements are performed in order to obtain the lift and drag values of these wings for seven velocity and twenty angle of attack values. The physical behavior of the flow is analyzed by performing oil flow visualization technique for one of the models and compared with the load cell experiments. According to the load cell measurements in level flight, for a fixed value of lift, the angle of attack and the drag trends of the wings are analyzed. Then, at these velocities and angle of attack values, particle image velocimetry (PIV) experiments are performed. Laser plane is placed perpendicular to the free stream velocity at the downstream of the wing in order to analyze the wing tip vortices. The wing tip vortices of the four half wing models are recorded at two different downstream locations from the wing tip. Vector maps, velocity magnitude, vorticity, turbulence kinetic energy, Reynolds stress component and vortex core radii are analyzed. The aim of this study is to validate the numerical results in a separate study with load cell and PIV measurements of a morphing wing. By this approach it is shown that, for level flight, the three morphing wing shapes are optimized from the base wing properly for the particular velocities they are designed for.

Suggestions

Optimization of compliant parts of a hybrid trailing edge control surface of a morphing unmanned aerial vehicle
Arslan, Pınar; Gürses, Ercan; Department of Aerospace Engineering (2017)
In this thesis, optimization studies are conducted for compliant parts of a hybrid trailing edge control surface of an unmanned aerial vehicle (UAV). The geometry of the control surface was taken from a previous study conducted in [1], and then regenerated parametrically through Design Modeler tool of ANSYS Workbench v15.0. The finite element model of the control surface is created by using ANSYS Workbench v15.0 Static Structural module. The optimization study of the compliant part is conducted by using Ada...
Investigation of rotor rotor interactions for two helicopters in forward flight using free vortex wake methodology
Tonkal, Ozan Çağrı; Pehlivan, Sercan; Sezer Uzol, Nilay; İşler, Veysi (null; 2010-07-01)
This paper presents an investigation of the aerodynamic interactions between two UH-1H helicopter rotors in forward flight. The wake flow structure and performance characteristics of the rotors are investigated when the rear rotor is operating within the wake of the front rotor. A 3-D unsteady vortex-panel method potential flow solver based on a free-vortex-wake methodology is used for this purpose. The solver is validated using the experimental data from the Caradonna-Tung experiments. The interactional an...
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Comparison of conventional deep drawing, hydromechanical deep-drawing and high pressure sheet metal forming by numerical experiments
Onder, IE; Tekkaya, AE (2005-08-19)
Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydromechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing rati...
Experimental Evaluation of the Knowledge-Aided Sigma-Delta STAP Algorithm to Improve GMTI Performance
Anadol, Erman; Tanık, Yalçın (2014-06-05)
A novel knowledge-aided processing scheme is proposed for use in Ground Moving Target Indication (GMTI) operation to be operated in real time on airborne SAR/GMTI sensors. The proposed approach is based on the Sigma-Delta Post-Doppler Space-Time Adaptive Processing (STAP) algorithm and makes use of a priori knowledge sources as well as instantaneous sensor data in order to improve detection performance in non homogeneous interference environments. The algorithm is tested with actual radar data obtained duri...
Citation Formats
Ö. S. Özçakmak, “Experimental investigation of morphing wing aerodynamics by force measurements and particle image velocimetry,” M.S. - Master of Science, Middle East Technical University, 2015.