Intelligent design objects applied to the spatial allocation problem

Download
2014
Zaratiegui Fernandez, Javier Ignacio
This thesis approaches the spatial allocation problem as a multi-objective optimization problem. It proposes the use of Intelligent Design Objects (IDO) model to help designers with this task. Solutions are generated and evaluated, according the user defined criteria. Iterative improvement is proposed as a help to visualize candidate solutions and conceive the desired spatial relations. By defining the criteria and rating it numerically, both designer and client are able compare the solutions obtained. The use of fuzzy logic is implemented to address soft concepts as part of the architectural design process. New relations are defined until a good solution is found. The implementation is evaluated via two case studies: layout organization of sets of rectangles (two dimensions) and TUDelft graduation project for the American Embassy in The Hague (three dimensions).

Suggestions

Hybrid heuristic algorithms for the multi objective load balancing of 2D bin packing problems
Muhammet, Beyaz; Dökeroğlu, Tansel; Coşar, Ahmet (null; 2015-09-23)
2D Bin packing problem (2DBPP) is an NP-hard combinatorial optimization problem. Multiobjective versions of this well-known industrial engineering problem can occur frequently in real world application. Recently, Hybrid Evolutionary Algorithms have appear as a new area of research with their ability to combine alternative heuristics and local search mechanisms together for higher quality solutions. In this study, we propose a set of novel multiobjective hybrid genetic and memetic algorithms that make use of...
Forward Kinematics of the 6-6 general Parallel Manipulator Using Real Coded Genetic Algorithms
Rolland, Luc; Chandra, Rohitash (2009-07-17)
This article examines an optimization method to solve the forward kinematics problem (FKP) applied to parallel manipulators. Based on Genetic Algorithms (GA), a non-linear equation system solving problem is converted into an optimization one. The majority of truly parallel manipulators can be modeled by the 6-6 which is an hexapod constituted by a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two ball joints. Parallel manipulator kinemat...
Effective optimization with weighted automata on decomposable trees
Ravve, E. V.; Volkovich, Z.; Weber, Gerhard Wilhelm (Informa UK Limited, 2014-01-02)
In this paper, we consider quantitative optimization problems on decomposable discrete systems. We restrict ourselves to labeled trees as the description of the systems and we use weighted automata on them as our computational model. We introduce a new kind of labeled decomposable trees, sum-like weighted labeled trees, and propose a method, which allows us to reduce the solution of an optimization problem, defined in a fragment of Weighted Monadic Second Order Logic, on such a tree to the solution of effec...
Comparison of multi-objective and single-objective approaches in feasibility enhanced particle swarm optimization
Hasanoglu, Mehmet Sinan; Dölen, Melik (Journal of the Faculty of Engineering and Architecture of Gazi University, 2020-01-01)
In this study, solutions for multi-objective constrained problems and their fixed weight linearly aggregated single-objective variants were obtained using the Pareto based multi-objective feasibility enhanced particle swarm optimization and single-objective approaches respectively. Comparisons involving three problems (two of which were highly constrained) revealed that optimizations performed using the multi-objective approach resulted in solutions that were also suitable for all single-objective criteria....
Nonlinear Seismic Dam and Foundation Analysis Using Explicit Newmark Integration Method with Static Condensation
Albostan, Utku; Bahcecioglu, Tunc; Arıcı, Yalın; Kurç, Özgür (Elsevier BV; 2017-09-13)
Engineers use the explicit Newmark integration method to analyze nonlinear dynamic problems. Instead of using computationally expensive global matrix assembly and factorization, the explicit integration method performs computations at element level which is computationally efficient, easily parallelizable, and does not require equilibrium iterations in case of nonlinear analysis. On the other hand, the explicit schema might require much smaller time steps compared to implicit integration alternative especia...
Citation Formats
J. I. Zaratiegui Fernandez, “Intelligent design objects applied to the spatial allocation problem,” M.S. - Master of Science, Middle East Technical University, 2014.