Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Forward Kinematics of the 6-6 general Parallel Manipulator Using Real Coded Genetic Algorithms
Date
2009-07-17
Author
Rolland, Luc
Chandra, Rohitash
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
This article examines an optimization method to solve the forward kinematics problem (FKP) applied to parallel manipulators. Based on Genetic Algorithms (GA), a non-linear equation system solving problem is converted into an optimization one. The majority of truly parallel manipulators can be modeled by the 6-6 which is an hexapod constituted by a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two ball joints. Parallel manipulator kinematics are formulated using the explicit Inverse Kinematics Model (IKM). The position based equation system is implemented. In order to implement GA, the objective function is formulated specifically for the FKP using one squared error performance criteria applied on the leg lengths augmented by three platform joint distances. The proposed approach implements an elitist selection process where a new mutation operator for Real-Coded GA is analyzed. These experiments are the first to converge towards several exact solutions on a general Gough platform manipulator with fast convergence.
Subject Keywords
Parallel robot
,
Gough platform
,
Spatial parallel manipulator
,
Forward kinematics
,
Position based model
,
Genetic algorithms
,
Mutation-based operators
,
Elitist selection
,
Real root isolation
URI
https://hdl.handle.net/11511/65143
Conference Name
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Collections
Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Forward Kinematics of the 3RPR planar Parallel Manipulators Using Real Coded Genetic Algorithms
Rolland, Luc; Chandra, Rohitash (2009-09-16)
This article examines Genetic Algorithms to solve the forward kinematics problem applied to planar parallel manipulators. Most of these manipulators can be modeled by the tripod 3-RPR.
On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm
Rolland, Luc; Chandra, Rohitash (2010-07-08)
The G3-PCX genetic algorithm is compared with hybrid meta-heuristic approaches for solving the forward kinematics problem of the 6-6 general parallel manipulator. The G3-PCX shows improvements in terms of accuracy, response time and reliability. Several experiments confirm solving the given problem in less than 1 second. It also reports all the 16 unique real solutions which are verified by an exact algebraic method. This opens the way to simulation and certification applications.
Parallel processing of two-dimensional euler equations for compressible flows
Doǧru, K.; Aksel, M.h.; Tuncer, İsmail Hakkı (2008-12-01)
A parallel implementation of a previously developed finite volume algorithm for the solution of two-dimensional, unsteady, compressible Euler equations is given. The conservative form of the Euler equations is discretized with a second order accurate, one-step Lax-Wendroff scheme. Local time stepping is utilized in order to accelerate the convergence. For the parallel implementation of the method, the solution domain is partitioned into a number of subdomains to be distributed to separate processors for par...
STABILITY OF CONTROL FORCES IN REDUNDANT MULTIBODY SYSTEMS
IDER, SK (1996-01-03)
In this paper inverse dynamics of redundant multibody systems using a minimum number of control forces is formulated. It is shown that the control forces and the task accelerations may become noncausal at certain configurations, yielding the dynamical equation set of the system to be singular. For a given set of tasks, each different set of actuators leads to a different system motion and also to different singular configurations. To avoid the singularities in the numerical solution, the dynamical equations...
Intelligent design objects applied to the spatial allocation problem
Zaratiegui Fernandez, Javier Ignacio; Sorguç, Arzu; Computational Design and Fabrication Technologies in Department of Architecture (2014)
This thesis approaches the spatial allocation problem as a multi-objective optimization problem. It proposes the use of Intelligent Design Objects (IDO) model to help designers with this task. Solutions are generated and evaluated, according the user defined criteria. Iterative improvement is proposed as a help to visualize candidate solutions and conceive the desired spatial relations. By defining the criteria and rating it numerically, both designer and client are able compare the solutions obtained. The ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Rolland and R. Chandra, “Forward Kinematics of the 6-6 general Parallel Manipulator Using Real Coded Genetic Algorithms,” Singapore, SINGAPORE, 2009, p. 1630, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65143.