Optimum spacing between vertical, parallel heat generating boards cooled by natural convection in a fixed volume

Saygan, Samet
In this study, the effect of distance between vertical and parallel heat generating plates which are fixed in a given volume on the natural convection to the air between plates is investigated both numerically and experimentally. The conservation equations which represent the constant property air flow in fixed and rectangular cross section channel are solved by the FloEFD software which used the Finite Volume Method and the SIMPLE algorithm. The maximum temperatures of plates are compared with the experimental results. The optimum spacing in order to provide the maximum heat transfer to the air at given volume which plates are inserted and specified maximum temperature is determined. By using the results of optimization, relations associated with the optimum spacing, which gives the maximum heat transfer rate, and width, height of the plates and the kinematic and thermodynamic properties of air is derived. Those obtained relations are extended by using the results of studies in the literature which used plates in infinite width.