Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance of rectangular fins on a vertical base in free convection heat transfer
Download
index.pdf
Date
2005
Author
Yazıcıoğlu, Burak
Metadata
Show full item record
Item Usage Stats
448
views
188
downloads
Cite This
The steady-state natural convection heat transfer from vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. The effects of geometric parameters and base-to-ambient temperature difference on the heat transfer performance of fin arrays were observed and the optimum fin separation values were determined. Two similar experimental set-ups were employed during experiments in order to take measurements from 30 different fin configurations having fin lengths of 250 mm and 340 mm. Fin thickness was maintained fixed at 3 mm. Fin height and fin spacing were varied from 5 mm to 25 mm and 5.75 mm to 85.5 mm, respectively. 5 heat inputs ranging from 25 W to 125 W were supplied for all fin configurations, and hence, the base and the ambient temperatures were measured in order to evaluate the heat transfer rate from fin arrays. The results of experiments have shown that the convection heat transfer rate from fin arrays depends on all geometric parameters and base-to-ambient temperature difference. The effect of these parameters on optimum fin spacing was also examined, and it was realized that for a given base-to-ambient temperature difference, an optimum fin spacing value which maximizes the convective heat transfer rate from the fin array is available for every fin height. The results indicated that the optimum fin spacings are between 8.8 mm and 14.7 mm, for the fin arrays employed in this work. Using the experimental results of present study and experimental results in available literature [2,3,9,10,11,12,14], a correlation for optimum fin spacing at a given fin length and base-to-ambient temperature difference was obtained as a result of scale analysis.
Subject Keywords
Heat.
URI
http://etd.lib.metu.edu.tr/upload/12605699/index.pdf
https://hdl.handle.net/11511/14803
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer
Yazicioglu, B.; Yuencue, H. (2007-11-01)
The steady-state natural convection heat transfer from aluminum vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. Thirty different fin configurations were tested. Experiments were performed for fin lengths of 250 and 340 mm. Fin thickness was kept fixed at 3 mm. Fin height and fin spacing were varied from 5 to 25 mm and 5.75 to 85.5 mm, respectively. Five heat inputs ranging from 25 to 125 W were supplied for all fin configurations, hence; th...
Optimum spacing between vertical, parallel heat generating boards cooled by natural convection in a fixed volume
Saygan, Samet; Yüncü, Hafit; Department of Mechanical Engineering (2014)
In this study, the effect of distance between vertical and parallel heat generating plates which are fixed in a given volume on the natural convection to the air between plates is investigated both numerically and experimentally. The conservation equations which represent the constant property air flow in fixed and rectangular cross section channel are solved by the FloEFD software which used the Finite Volume Method and the SIMPLE algorithm. The maximum temperatures of plates are compared with the experime...
EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME
İnci, Aykut Barış; Bayer, Özgür (2019-01-01)
Geometrical optimization of heat sinks with square, cylindrical and plate fins for heat transfer increase is numerically analyzed in transition regime external flow. The relations between the thermal characteristics of fins and boundary conditions such as free-stream velocity are investigated. Experimental studies are performed by using manufacturable fins to validate the numerical model. Heat transfer correlations are derived in order to determine average heat transfer coefficients over a certain range of ...
Modeling of fluid -vapor interface in the condensation zone of a grooved heat pipe
Alipour, Mobin; Dursunkaya, Zafer; Department of Mechanical Engineering (2017)
Condensation in grooved heat pipes involves several simultaneous phenomena including vapor-liquid boundaries whose shapes are unknown a priori, fluid flow due to capillary and dispersion pressure gradients and condensation over ultra thin films. In grooved heat pipes, the majority of condensation occurs on fin tops due to the thinner liquid film, having a lower thermal resistance, compared to inside the groove where the fluid is substantially thicker. Majority of the studies in the literature assume an appr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yazıcıoğlu, “Performance of rectangular fins on a vertical base in free convection heat transfer,” M.S. - Master of Science, Middle East Technical University, 2005.