Design, implementation and engineering aspects of 12-pulse TCR based SVC systems for voltage regulation

Download
2014
Parlak, Deniz
Thyristor controlled reactor (TCR) based static VAr compensator (SVC) systems has various types with unique characteristics. Considering power system requirements, suitable compensator type should be chosen. In this thesis work, 12-pulse TCR based voltage regulation type SVC system is analyzed, simulated and implemented. Principles of operation, strong and weak points are discussed. The developed system has been implemented in order to solve voltage regulation problem in Dhurma (Saudi Arabia). According to the requirements, power stage and control system is designed. Overall system is composed of two similar compensator systems each having a rated power of 1.5 MVAr (3 MVAr in total). Different types of control algorithms are examined in order to get the optimized solution in terms of power quality issues such as power system losses and harmonics. Power system at the corresponding area and the compensator is simulated using EMTDC/PSCAD program. Field test results are also obtained and compared with simulation results.

Suggestions

Steady-state modeling of a phase-shift PWM parallel resonant converter
Iskender, Ires; Uctug, Yildurum; Ertan, Hulusi Bülent (2006-01-01)
Purpose - To derive an analytical model for a dc-ac-dc parallel resonant converter operating in lagging power factor mode based on the steady-state operation conditions and considering the effects of a high-frequency transformer.
Design and Implementation of a 154-kV +/- 50-Mvar Transmission STATCOM Based on 21-Level Cascaded Multilevel Converter
Gultekin, Burhan; Gercek, Cem Ozgur; Atalik, Tevhid; Deniz, Mustafa; Bicer, Nazan; Ermiş, Muammer; Kose, Kemal Nadir; Ermis, Cezmi; Koc, Erkan; Cadirci, Isik; Acik, Adnan; Akkaya, Yener; Toygar, Hikmet; Bideci, Semih (2012-05-01)
In this research work, the design and implementation of a 154-kV +/- 50-Mvar transmission static synchronous compensator (T-STATCOM) have been carried out primarily for the purposes of reactive power compensation and terminal voltage regulation and secondarily for power system stability. The implemented T-STATCOM consists of five 10.5-kV +/- 12-Mvar cascaded multilevel converter (CMC) modules operating in parallel. The power stage of each CMC is composed of five series-connected H-bridges (HBs) in each phas...
Performance Analysis of Reduced Common-Mode Voltage PWM Methods and Comparison With Standard PWM Methods for Three-Phase Voltage-Source Inverters
Hava, Ahmet Masum (2009-01-01)
This paper surveys the reduced common-mode voltage pulsewidth modulation (RCMV-PWM) methods for three-phase voltage-source inverters, investigates their performance characteristics, and provides a comparison with the standard PWM methods. PWM methods are reviewed, and their pulse patterns and common-mode voltage (CMV) patterns are illustrated. The inverter input and output current ripple characteristics and output voltage linearity characteristics of each PWM method are thoroughly investigated by analytical...
Design and implementation of a voltage source converter based statcom for reactive power compensation and harmonic filtering
Çetin, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-co...
Active clamped ZVS forward converter with soft-switched synchronous rectifier for maximum efficiency operation
Acik, A; Cadirci, I (1998-05-22)
An active-clamped, zero-voltage switched forward converter equipped with a soft-switched synchronous rectifier is designed and implemented for some low output voltage applications where maximized efficiency is of utmost importance. The converter efficiency is maximized due to soft-switching of the main, active clamp and the synchronous rectifier MOSFET switches. Experimental results are presented for a converter with a de input voltage of 48V, an output voltage of 5V and a de electronic load up to 10A. The ...
Citation Formats
D. Parlak, “Design, implementation and engineering aspects of 12-pulse TCR based SVC systems for voltage regulation,” M.S. - Master of Science, Middle East Technical University, 2014.