Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study

Download
2014
Usta, Eray
Spillway is a hydraulic structure that is used to pass big discharges in flood times in a controlled manner and release surplus water that cannot be safely stored in the reservoir to downstream. During the design process of the spillways, determining of hydraulic behavior of these structures is a very significant issue for an accurate and optimum design. In this thesis, the objective is to investigate the hydraulic characteristics of the flow over Laleli dam spillway numerically and compare the results with physical model. Flow over Laleli dam spillway was modeled numerically in three dimensions based on the Volume of Fluid (VOF) technique using Flow 3D which is widely used in flow analysis as a commercially available computational fluid dynamics (CFD) program. The model solved the Reynolds Averaged Navier-Stokes (RANS) equations with the Renormalized Group Equations (RNG) turbulence model on body independent orthogonal fixed grid. Appropriate grid selection, mesh refinement process, pressure distribution over the spillway, air entrainment effect, scale effect and cavitation potential over the spillway were investigated during this study. The results indicate that a three-dimensional numerical spillway model can be rapid and practical tool in order to predict the hydraulic parameters of the spillway flow.

Suggestions

Numerical analyses of flow characteristics in the vicinity of spillway aerators
Kurt, Can; Tokyay Sinha, Talia Ekin; Department of Civil Engineering (2016)
Spillway aerators are used in the spillways that are designed to carry medium to high discharges during their operation. Aerators are aimed to reduce the risk of cavitation in these high velocity flows. Most of the time, design of these aerators are based on physical models and experimental results. However, with the advancement in computational resources, it became possible to analyze the effect of aerators using computational fluid dynamics (CFD). To this end, three-dimensional numerical simulations of su...
Seismic Performance Evaluation of Concrete Gravity Dams by Using Pseudo Dynamic Testing and Simulations
Aldemir, Alper; Binici, Barış (null; 2017-11-24)
Dams are one of the mostimportantinfrastructure components servingfor water storage and energyproduction.Experimental studies on the seismic response of concrete gravity dams are scarce due to the complications regarding thelargescaleof dams and their interaction with the reservoir. This study presents the results of recent novel pseudo-dynamic dam tests (PSD) along with the nonlinear finite element simulations of the specimens. The test specimens were 1/75 scaled version of the highest ...
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
SORGUN, Mehmet; Ozbayoglu, M. Evren; Aydın, İsmail (2010-09-01)
A major concern in drilling operations is the proper determination of frictional pressure loss in order to select a mud pump and avoid any serious problems. In this study, a mechanistic model is proposed for predicting the frictional pressure losses of light drilling fluid, which can be used for concentric annuli. The experimental data that were available in the literature and conducted at the Middle East Technical University-Petroleum Engineering (METU-PETE) flow loop as well as computational fluid dynamic...
Particle tracking modeling of marine sediment pollution
Özdemir, Rabia Tuğçe; Durgut, İsmail; Department of Petroleum and Natural Gas Engineering (2015)
Drilling cuttings, chemicals and drilling mud that are discharged to the sea during drilling in offshore, affect sediment habitat at sea floor. The main stressors describing the impact of discharges on marine sediment are, burial, toxicity and free oxygen depletion. In order to determine the effects of mixing of the discharged material in the sediment column, one dimensional particle tracking model that utilizes the random walk method was developed for estimating the free oxygen, natural carbon and added ch...
Application of volume of fluid (VOF) method in conjunction with shear stress transport (SST) k-ω turbulence closure model to investigate spillway flow
Bayrakdar, Fatih; Tokyay Sinha, Talia Ekin; Department of Civil Engineering (2017)
Hydraulic engineers often require to assess the reasons and consequences of interaction of flow with structures. Computational Fluid Dynamics (CFD) became a useful tool in this regard in recent years as it provides ample amount of information both on flow and its interaction with its surrounding. To this end, flows over a spillway are investigated. The computational domain for the flow over a spillway is based on the study by Dargahi (2006). Numerical results are compared to previous experimental ones. In t...
Citation Formats
E. Usta, “Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study,” M.S. - Master of Science, Middle East Technical University, 2014.