An approach for seismic damage assessment of residential buildings /

Demirci, Ceren
For developing countries in earthquake-prone regions, two main issues in seismic damage estimation are identification of seismic hazard in the region of interest and up-to-date information of the existing building stock. This study proposes an approach to handle these key issues and to obtain reliable measures for regional seismic damage estimation. The approach makes use of the basic structural information for different types of construction. This information can be readily available or may have been obtained after conducting a walk-down (street) survey in the region of interest. Then these parameters, which reflect the local characteristics of the building stock, are used to classify the residential buildings and to construct idealized SDOF models in order to provide an estimation of seismic damage of the buildings under consideration. After the formation of SDOF models, the seismic response of each building sub-classes are obtained through dynamic analyses. Within the scope of the proposed approach, scenario earthquakes are simulated due to scarcity of the real ground motion records recorded in the region during past earthquakes. The simulated records are obtained with regional seismic parameters regarding the source, path and site effects. The SDOF models are assumed to be subjected to these simulated records in order to obtain the seismic response. At the final step, the SDOF displacements obtained from dynamic analyses are compared vi with pre-defined limit states for different building types and the corresponding damage states of the buildings are estimated. The final part of the study is devoted to the application of the proposed approach to one of the most earthquake-prone regions in Turkey and the world; the city of Erzincan. The results reveal that Erzincan city is under high risk, hence precautions should be taken immediately before an other major earthquake hits to the city.


Derivation of site-specific UHS based on simulated ground motions and its parametric effects on building fragility
Azari Sisi, Aida; Askan Gündoğan, Ayşegül; Department of Civil Engineering (2016)
Estimation of seismic demands is essential for the purpose of structural seismic design and analyses. It is significant to obtain reliable ground motion amplitudes to estimate seismic damage on structures in a realistic manner. The ground motion simulation methodologies provide a physical approach to estimate seismic demands in the regions with sparse recording data and scarce networks. This dissertation consists of two main parts: In the first part, site-specific uniform hazard spectrum (UHS) of Erzincan r...
Probabilistic seismic hazard assessment for earthquake induced landslides
Balal, Onur; Gülerce, Zeynep; Department of Civil Engineering (2013)
Earthquake-induced slope instability is one of the major sources of earthquake hazards in near fault regions. Simplified tools, such as Newmark’s Sliding Block (NSB) Analysis are widely used to represent the stability of a slope under earthquake shaking. The outcome of this analogy is the slope displacement where larger displacement values indicate higher seismic slope instability risk. Recent studies in the literature propose empirical models between the slope displacement and single or multiple ground mot...
Investigation of seismic isolation efficiency for building structures
Özdemir, Seda; Yakut, Ahmet; Ay, Bekir Özer; Department of Earthquake Studies (2016)
The main goal of this study is to assess the efficacy of seismic isolation for building type of structures with different structural systems, namely, dual systems and moment frame systems having also different number of floors. Specific to this study, the main parameters employed for efficacy assessment will be the interstorey drift ratio and floor acceleration since both structural and non-structural damage to be occured in a system are directly related to these two parameters. To assess the variations in inter...
Probabilistic seismic hazard assessment for east anatolian fault zone using planar source models
Menekşe, Akın; Gülerce, Zeynep; Department of Civil Engineering (2015)
The objective of this study is to perform probabilistic seismic hazard assessment (PSHA) using planar seismic source characterization models for East Anatolian Fault Zone (EAFZ) and to update the design ground motions to be used in the region. Development of planar seismic source models requires the definition of source geometry in terms of fault length, fault width, fault plane angles and segmentation points for each segment and associating the observed seismicity with defined fault systems. This complicat...
On-line web-based structural evaluation program development for existing reinforced concrete buildings against earthquakes
Yücel, Mustafa Can; Türer, Ahmet; Department of Civil Engineering (2017)
Structural assessment is a very hot topic in earthquake-prone countries since the evaluation of building stock is necessary for existing aged or shady buildings, after a major earthquake, or after major seismic code changes. Many different techniques are proposed in this context, but there are very limited studies on applying assessment methods using internet-based technologies even though web-based approaches will have many advantages such as formation of a building condition database, integration with oth...
Citation Formats
C. Demirci, “An approach for seismic damage assessment of residential buildings /,” M.S. - Master of Science, Middle East Technical University, 2014.