A marginalized multilevel model for bivariate longitudinal binary data

Download
2014
İnan, Gül
This thesis study considers analysis of bivariate longitudinal binary data. We propose a model based on marginalized multilevel model framework. The proposed model consists of two levels such that the first level associates the marginal mean of responses with covariates through a logistic regression model and the second level includes subject/time specific random intercepts within a probit regression model. The covariance matrix of multiple correlated time-specific random intercepts for each subject is assumed to represent the within-subject association. The subject-specific random effects covariance matrix is further decomposed into its dependence and variance components through modified Cholesky decomposition method to handle possible computational and statistical problems that may be associated with its high-dimensionality. Then the unconstrained version of resulting parameters are modelled in terms of covariates with low-dimensional regression parameters, which provides better explanations related to dependence and variance parameters and a reduction in the number of parameters to be estimated in random effects covariance matrix to avoid possible identifiability problems. Marginal correlations between responses of subjects and within the responses of a subject are derived through a Taylor series-based approximation. Data cloning computational algorithm is used to compute the maximum likelihood estimates of the parameters in the proposed model and their standard errors. The validity of the proposed model is assessed through a Monte Carlo simulation study under different scenarios, and results are observed to be at acceptable level. Lastly, the proposed model is illustrated through Mother’s Stress and Children’s Morbidity study data, where both population-averaged and subject-specific interpretations are drawn through Emprical Bayes estimation of random effects.

Suggestions

A marginalized multilevel model for bivariate longitudinal binary data
Inan, Gul; İlk Dağ, Özlem (Springer Science and Business Media LLC, 2019-06-01)
This study considers analysis of bivariate longitudinal binary data. We propose a model based on marginalized multilevel model framework. The proposed model consists of two levels such that the first level associates the marginal mean of responses with covariates through a logistic regression model and the second level includes subject/time specific random intercepts within a probit regression model. The covariance matrix of multiple correlated time-specific random intercepts for each subject is assumed to ...
A simulation study on marginalized transition random effects models for multivariate longitudinal binary data
Yalçınöz, Zerrin; İlk Dağ, Özlem; Department of Statistics (2008)
In this thesis, a simulation study is held and a statistical model is fitted to the simulated data. This data is assumed to be the satisfaction of the customers who withdraw their salary from a particular bank. It is a longitudinal data which has bivariate and binary response. It is assumed to be collected from 200 individuals at four different time points. In such data sets, two types of dependence -the dependence within subject measurements and the dependence between responses- are important and these are...
Implementation of different flux evaluation schemes into a two-dimensional Euler solver
Eraslan, Elvan; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2006)
This study investigates the accuracy and efficiency of several flux splitting methods for the compressible, two-dimensional Euler equations. Steger-Warming flux vector splitting method, Van Leer flux vector splitting method, The Advection Upstream Splitting Method (AUSM), Artificially Upstream Flux Vector Splitting Scheme (AUFS) and Roe’s flux difference splitting schemes were implemented using the first- and second-order reconstruction methods. Limiter functions were embedded to the second-order reconstruc...
THE IMPLICATIONS OF BIG DATA ON SUBJECTIVITY: A CASE STUDY OF CAMBRIDGE ANALYTICA
Şinşek, Muhammed Yasin; Bahçecik, Şerif Onur; Department of International Relations (2022-1)
This thesis analyzes the implications of big data on subjectivity with a genealogical approach through the case of Cambridge Analytica. The changes in the epistemology, episteme, rationalities and the regimes of truth as a result of data pervasion are discussed. The statistics and the cybernetics as the antecedents of data politics are reviewed and data politics as a new mode of power is put forward. The targets, the objectives, the technologies and the rationalities of this new mode of power are analyzed. ...
Investigation of Stationarity for Graph Time Series Data Sets
Güneyi, Eylem Tuğçe; Vural, Elif (2021-01-07)
Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.
Citation Formats
G. İnan, “A marginalized multilevel model for bivariate longitudinal binary data,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.