Computational fluid dynamic analysis of wind loads acting on ground mounted solar panels /

Download
2014
Uslu, Veysel Emre
Solar energy becomes more important day by day as a result of being part of renewable energy and increasing energy consumption. Although development of photovoltaic panels is enjoying the attention of many researchers, there has not been enough study towards determination of the loads acting on supporting structures of these systems yet. In this thesis, CFD analysis is mainly employed in order to model, analyze and understand the effects of the wind forces acting on solar panels. Also, different from previous studies in this field, this study is more focused on the consecutive placement of ground mounted solar panels and realizing the importance of the sheltering effect. Wind tunnel testing is used to verify the numerical analysis. Moreover, CFD analysis and experiments available in the literature are considered for verification of the method employed in the analyses carried out in the thesis. Steady state SST k- turbulence model is considered in CFD analysis. Both 2D and 3D analyses are carried out, and it is observed that for the case of solar panel arrangements considered in this thesis, 2D analyses provides accurate results with robust modelling and solution in terms of computation time. Thus, 2D analyses approach is undertaken in the parametric analyses presented in the later part of the thesis, where sheltering effect in solar farms is investigated by considering 10 rows of panels. Parametric analyses are performed for both forward and reverse wind flows by considering panel length, clear height from the ground, spacing between 2 consecutive solar panels and tilt angle (inclination) as variables.

Suggestions

Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Modeling and financial analysis of a solar-biomass hybrid power plant in Turkey
Özdemir, Merve; Yozgatlıgil, Ahmet; Department of Mechanical Engineering (2017)
Solar thermal and biomass combustion systems can be hybridized via a Rankine cycle to have a continuous electricity generation and lower CO2 footprint. Disadvantages of these two renewable technologies can be overcome by hybridization. In this work; we develop a simulation model for Rankine cycle based, solar-biomass hybrid power plants using the ASPEN PLUS software. Solar parabolic collectors and biomass combustion are arranged in parallel to produce steam for power generation. Using the simulation model; ...
Enhancing Performance of Solar Cells via Wavefront Shaping
Atila, Sena; Yüce, Emre; Department of Micro and Nanotechnology (2022-8-25)
Solar energy has a great potential to provide for our energy demand. However, due to the broadband nature of the Sun, solar cells encounter efficiency losses. For singlejunction GaAs solar cells, the efficiency is measured as 27.6% at most [1]. Previously, the broadband light is experimentally split and concentrated to chosen positions on the CCD camera as three sub-bands to utilize the full spectrum of the Sun, and a particular type of diffractive optical element (SpliCon) is obtained [2]. In this thesis,...
Design and realization of a new concentrating photovoltaic solar energy module based on lossless horizontally staggered light guide
Selimoğlu, Özgür; Turan, Raşit; Department of Physics (2013)
Concentrating Photovoltaic systems are good candidates for low cost and clean electricity generation from solar energy. CPV means replacing much of the expensive semiconductor photovoltaic cells with the cheaper optics. Although the idea is simple, CPV systems have several problems inherent to their system design, such as module thickness, expensive PV cells and overheating. Light guide systems are good alternatives to classical CPV systems that can clear off most of the problems of those systems. In this t...
An analysis on the potential of solar photovoltaic power
Samu, Remember; Fahrioglu, Murat (2017-01-01)
In this present paper, the potential of solar photovoltaic power in Zimbabwe so as to cater for the rising energy demand is assessed. The main objective of this present study is to convert solar resources in 28 different locations scattered all over the country into electrical energy. This investment requires a capital cost of US$18,952,500 and a total land area of 51,020m(2). The 10 MW grid-connected PV potential is feasible for all the chosen locations. Chegutu seems to be the most suitable and profitable...
Citation Formats
V. E. Uslu, “Computational fluid dynamic analysis of wind loads acting on ground mounted solar panels /,” M.S. - Master of Science, Middle East Technical University, 2014.