Micro-siting of wind turbines using navier-stokes solutions coupled with a numerical weather prediction model

Download
2014
Ahmet, Gökhan
High resolution atmospheric flow solutions are obtained with an in-house, parallelized 3 dimensional Navier-Stokes solver, HYP3D coupled with a meso-scale meteorological weather prediction software, WRF, and the wind potential of a specified terrain is assessed based on long term atmospheric flow solutions. Body-fitted grids are employed to discretize the complex terrain of interest in HYP3D. In the study, high resolution (1.5 arcsec) topographical data is used to discretize the specified terrain. In HYP3D solver, the flow field is initialized and the unsteady and spatially varying boundary conditions are continuously updated at the domain boundaries using the data extracted from the WRF solutions in 5 minute time intervals. The unsteady flow solutions and the implementation of the boundary conditions on HYP3D are achieved in a parallel computing environment. The difficulties in coupling the WRF and HYP3D solutions due to the mesh structure and the resolution differences are resolved through two different algorithms. The results are presented as contour plots of velocity fields in time series, and as the Weibull distributions along with wind roses based on integrated data. The velocity fields computed are compared against the met-mast observation data for validation. In the study unsteady Navier-Stokes solutions closely coupled with the WRF solutions on high resolution, terrain fitted grids are successfully obtained, the performance of the in-house solver developed is assessed, and several tools are developed for the micro-siting of wind turbines.

Suggestions

Validation of Parallel WRF Downscaling Methodology using OpenFOAM
Leblebici, Engin; Tuncer, İsmail Hakkı (2017-06-26)
The main objective of this study is to obtain real-time atmospheric flow solutions using open source CFD solver OpenFOAM coupled with Numerical Weather Prediction (NWP) model; Weather Research Forecast (WRF). NWP can take moist convection, land surface parameterization, atmospheric boundary layer physics into account, but wind flow features finer than 1 km aren't captured by the turbulence physics of such models. CFD simulations, however, have proved to be useful at capturing the detail...
Investigation of inertial support limits in wind turbines and the effects on the power system stability
Duymaz, Erencan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2019)
In this study, the inertial support implementation is studied for variable speed wind turbines with a full-scale power electronics. To increase the active power as desired, Machine Side Converter is modified with an additional control loop. In the first part of the thesis, active power of the wind turbine is increased to the limits and the maximum achievable active power is found out to be restricted by the wind speed. It is found that the wind turbine can increase its output power by 40% of rated power in ...
Dynamic modelling and simulation of a wind turbine
Altuğ, Ayşe Hazal; Yavrucuk, İlkay; Department of Aerospace Engineering (2015)
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments...
Ice accretion prediction on wind turbine blades and aerodynamic shape optimization for minimizing power production losses
Yırtıcı, Özcan; Tuncer, İsmail Hakkı; Özgen, Serkan; Department of Aerospace Engineering (2018)
The global wind energy resources are plentiful in cold climate regions and mountainous areas, which cause ice formation on wind turbine blades. Prediction of ice accretion on wind turbine blades makes it possible to estimate the power losses due to icing. Ice accretion on wind turbine blades is responsible for significant increases in aerodynamic drag and decreases in aerodynamic lift, and may even cause premature flow separation. All these events create power losses and the amount of power loss depends on ...
Investigation of layout optimization for offshore wind farms and a case study for a region in Turkey
Kaya, Baran; Oğuz, Elif; Department of Civil Engineering (2022-2)
In this thesis, the focus was to develop an optimization tool by using mathematical layout optimization methods aiming to increase the energy capacity or reduce the cost of an offshore wind farm. For this purpose, two wind farm layout optimization (WFLO) models were developed using genetic algorithm (GA): model (a) minimizing the cost of power for variable turbine number, model (b) maximizing the power generation for fixed turbine number. Wind speed and wind direction were assumed constant. Therefore, unlik...
Citation Formats
G. Ahmet, “Micro-siting of wind turbines using navier-stokes solutions coupled with a numerical weather prediction model,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.