Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling and transient analysis of a hybrid liquid desiccant cooling system
Download
index.pdf
Date
2014
Author
Karshenass, Arash
Metadata
Show full item record
Item Usage Stats
231
views
287
downloads
Cite This
Desiccant Cooling Systems (DCS) are considered as an alternative method for conventional vapor compression cooling systems (VCCS) or at least a complimentary component to them. In conventional VCCS inlet air is cooled down to blow its dew point for dehumidification and then is reheated again to obtain air flow with desired temperature and humidity, and consequently inefficient consumption of energy. In DCS, dehumidification of air is done by utilizing of desiccant material to get desirable humidity and then dry air is cooled by evaporation method or cooling coils down to suiTABLE temperature. This thesis presents a study of the feasibility of a hybrid liquid desiccant cooling system with Lithium Chloride as the desiccant material. Mathematical models of desiccant contactors are adopted from the literature. The whole system is modeled in the TRNSYS platform and is simulated using Typical Metrological Year data. The building model has developed in accordance with the building construction and operation. Simulations are performed over the summer period of the year and the results are compared to the results assuming a VCCS from system characteristics and energy saving points of view. One of the most important outputs is that, DCS has to be investigated in a transient manner rather than steady state conditions. The results also indicate that consumed energy in both systems are approximately equal in magnitudes but different in type; DCS shifts required energy from electricity to thermal energy. Also for large supply-air flow rate applications, DCS would be more beneficial than VCCS. In addition, DCS provides suiTABLE conditions in lower supply-air flow rates in which VCCS cannot. This is due to low humidity ratio requirement of supply air which cannot be accessed in typical VCCS because of temperature limit of chiller.
Subject Keywords
Cooling.
,
Solar energy.
,
Drying apparatus.
,
Air conditioning.
URI
http://etd.lib.metu.edu.tr/upload/12617788/index.pdf
https://hdl.handle.net/11511/23977
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modelling and Precalculation of Additional Losses of Inverter Fed Asynchronous Induction Machines for Traction Applications
Muellner, F.; Neudorfer, H.; Schmidt, E. (2011-09-10)
The inverter supply of asynchronous induction machines for traction applications has a major influence on both electromagnetic and thermal performance. In addition asynchronous induction machines used with traction drives of rail transportation vehicles have different design strategies compared against commonly used standard machines. Generally, the design of these machines requires high electromagnetic and thermal stress. Thus, the additional losses caused by the inverter have to be considered with the ini...
Multi-dimensional modelling of evaporation in the micro region of a micro grooved heat pipe
Akkuş, Yiğit; Dursunkaya, Zafer; Tarman, Işık Hakan; Department of Mechanical Engineering (2015)
Capillary cooling devices are preferred in heat removal from electronic components which are characterized by high heat dissipation rates. Heat pipes use various wick structures to generate the necessary capillary action. Heat pipes that use grooved micro-channels as wick structures, have been widely studied by researchers due to the fact that their simple geometry enables the modelling of fluid flow and heat transfer both analytically and numerically. Near the attachment point of liquid-vapor free surface ...
Implementation of metal-based microchannel heat exchangers in a microrefrigeration cycle, and numerical and experimental investigation of surface roughness effects on flow boiling
Jafari Khousheh Mehr, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
A microscale vapor compression refrigeration cycle has been constructed for possible application in the thermal management of compact electronic components. The micro-evaporator and micro-condenser components have been fabricated using wire electron discharge machining and micromilling, respectively. Three microevaporators have been manufactured with different surface roughness for the experimental and numerical investigation of roughness effect on nucleate flow boiling in microchannels. In the numerical pa...
Designing solar hot water systems for scaling environments
Baker, Derek Keıth (2001-02-01)
Component failures and system performance degradation in SHW systems due to scaling are common in areas with hard water, it appears that many valve and pump failures on the potable water side are related to scaling, and any scale build-up on heat transfer surfaces will result in performance degradation. Different designs are compared in regard to their suscepribility to problematic scaling. Indirect systems utilizing external and tank wall heat exchangers are compared in regard to the rate of scaling and th...
Parametric Study and Seasonal Simulations of a Solar Powered Adsorption Cooling System
Taylan, Onur; Baker, Derek Keıth; Kaftanoglu, Bilgin (2009-09-03)
Models of solar-thermal powered adsorption cooling systems with and without heat recovery developed in TRNSYS and results from steady-periodic and seasonal simulations are presented. A normalized model is presented and used to process the seasonal TRNSYS results to investigate the coincidence between the solar-supplied cooling power and cooling load as the relative sizes of the cooling system and storage are varied. The normalized model yields a seasonal solar fraction and seasonal loss fraction (the excess...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Karshenass, “Modelling and transient analysis of a hybrid liquid desiccant cooling system,” M.S. - Master of Science, Middle East Technical University, 2014.