Efficient rating estimation by using similarity in multi-dimensional check-in data

Download
2014
Uçar, Behlül
The usage coverage of location based social networks have boomed in the last years as well as the amount of data produced in them. This data is suitable for processing in order to make prediction. One of the requirements of this process is that the method used should be suitable for very big data sets. We propose a graph-based similarity calculation method in location-based social networks which improves the rating prediction performance of Singular Value Decomposition based collaborative filtering systems. We also propose a new rating prediction algorithm which increases the efficiency of rating prediction significantly. The methods are tested on check-in data of several users and the results are presented.

Suggestions

Extending singular value decomposition based recommendation systems with tags and ontology
Turgut, Yakup; Toroslu, İsmail Hakkı; Department of Computer Engineering (2014)
Due to increase of the volume of data related to user ratings on items, in recent years, recommendation systems became very popular, which uses this data in order to rec- ommend items to users in many different domains. Singular Value Decomposition is one of the most widely studied collaborative filtering recommendation techniques. In some applications users are also allowed to enter (sometimes free) tags in addition to their ratings on items. Adding tags in addition to regular users’ ratings on items have a...
Improved probabilistic matrix factorization model for sparse datasets /
Ar, Yılmaz; Taşkaya Temizel, Tuğba; Department of Information Systems (2014)
The amount of information on the World Wide Web has increased significantly owing to advancing web and information technologies. This has made it difficult for users to obtain relevant and useful information thus there is a need for information filtering. Recommender Systems (RS) have emerged as a technique to overcome the problem. Collaborative Filtering (CF) that is one of the widely used RS approaches aims to predict users’ preference concerning an item. The main idea behind CF is the users who agreed in...
An Analysis on user profiles and usage preferences for mobile application recommendations
Ünal, Perin; Taşkaya Temizel, Tuğba; Eren, Pekin Erhan; Department of Information Systems (2015)
In this thesis, we investigated the relationship between personality features and mobile technology use, particularly the use of traditional communication channels such as voice calls and SMS messaging and rapidly evolving mobile applications, specifically in communication and commerce domains. This was the first study to investigate the relationship between different personality features and different aspects of mobile technology use to this extent. The rapid growth in the mobile application market present...
Fusion of multimodal information for multimedia information retrieval
Yılmaz, Turgay; Yazıcı, Adnan; Department of Computer Engineering (2014)
An effective retrieval of multimedia data is based on its semantic content. In order to extract the semantic content, the nature of multimedia data should be analyzed carefully and the information contained should be used completely. Multimedia data usually has a complex structure containing multimodal information. Noise in the data, non-universality of any single modality, and performance upper bound of each modality make it hard to rely on a single modality. Thus, multimodal fusion is a practical approach...
Joint Antenna and Propagation Model Parameter Estimation Using RSS Measurements
Kasebzadeh, Parinaz; Fritsche, Carsten; Özkan, Emre; Gunnarsson, Fredrik; Gustafsson, Fredrik (2015-07-06)
In this paper, a semi-parametric model for RSS measurements is introduced that can be used to predict coverage in cellular radio networks. The model is composed of an empirical log-distance model and a deterministic antenna gain model that accounts for possible non-uniform base station antenna radiation. A least-squares estimator is proposed to jointly estimate the path loss and antenna gain model parameters. Simulation as well as experimental results verify the efficacy of this approach. The method can pro...
Citation Formats
B. Uçar, “Efficient rating estimation by using similarity in multi-dimensional check-in data,” M.S. - Master of Science, Middle East Technical University, 2014.