Hydrogen production from ethanol over mesoporous alumina based catalysts and microwave reactor applications

Gündüz, Seval
Due to fast depletion of fossil fuel resources and related environmental impact of CO2 emissions, the interest in hydrogen as a clean energy carrier has recently increased. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming process, has shown excellent potential with CO2 neutrality and renewability. Steam reforming of ethanol (SRE) process has a highly complex reaction network including numerous side reactions which decrease hydrogen yield and have a negative effect on process economy. In addition, highly endothermic nature of the steam reforming of ethanol reaction raises the doubts on the economic feasibility of the process. Therefore, the main objectives in the present study are; (i) designing and synthesizing novel mesoporous catalysts which are highly active for steam reforming of ethanol reaction and highly stable in the presence of steam at elevated temperature conditions and (ii) developing a new reaction system that uses an alternative heat source which is more efficient than conventional heating. In the scope of the present study, Co-Mg and Ni-Mg incorporated mesoporous alumina type materials were synthesized following two different techniques; direct synthesis (one-pot) and impregnation routes with Co/Al or Ni/Al molar ratio of 0.10. Catalytic activities of the synthesized materials were tested in both conventionally heated and focused-microwave reactor systems available in our laboratory. Afterwards, several characterization techniques were applied to both fresh and used catalysts in order to understand the reasons of catalytic performance differences obtained. Co-Mg incorporated catalysts prepared by direct addition of Mg (Co-Mg-MA and Co@Mg-MA) and by impregnation/lack of Mg (Co-Mg@MA and Co@MA) showed very different behavior towards steam reforming of ethanol process. While catalysts synthesized by direct addition of Mg exhibited superior activity towards steam reforming of ethanol reaction with an average hydrogen yield of 5.2 out of the maximum hydrogen yield value of 6.0, the ones synthesized by impregnation/lack of Mg showed no activity for hydrogen production. The main product obtained with these catalysts was ethylene indicating that ethanol dehydration reaction dominated the reaction pathway over these catalysts. According to XRD and XPS analysis, Co-Mg-MA and Co@Mg-MA catalysts synthesized by direct addition of Mg involved Coo and CoO phases which are the active structures for SRE reaction. However Co-Mg@MA and Co@MA catalysts were mainly composed of CoAl2O4 structure and no Coo and CoO phases were observed in their framework which resulted in low activity towards SRE reaction. Additionally, DRIFTS analysis of pyridine adsorbed samples showed that acidity of catalysts prepared by impregnation/lack of Mg (Co-Mg@MA and Co@MA) was very high which can be considered as the main reason of relatively high selectivity of ethanol dehydration reaction over these catalysts. The best catalyst towards SRE reaction, Co@Mg-MA, was also tested in focused-microwave reaction system and it was observed that microwave-assisted SRE reaction provided slightly higher and more stable hydrogen yield. The most surprising outcome of microwave-assisted SRE reaction was that coke elimination was achieved, most probably due to the uniform temperature distribution reached under microwave heating which eliminates Boudouard reaction that is the main route for coke deposition. Unlike Co-Mg incorporated catalysts, a drastic difference was not observed between the hydrogen yields of Ni-Mg incorporated catalysts. Hydrogen yields obtained by Ni-Mg-MA, Ni-Mg@MA and Ni@Mg-MA catalysts were 4.0, 4.5 and 5.0, respectively. This slight difference was attributed to different Ni particle sizes of materials synthesized by different routes. It is a known fact that large Ni particles show higher catalytic activity in the methanation of CO which result in higher CH4 selectivity and lower H2 yield. According to XRD analysis, particle sizes of Ni-Mg-MA and Ni@Mg-MA were 20 nm and 7 nm, respectively. Therefore it is obvious that lower hydrogen yield observed in Ni-Mg-MA catalyst was due to the higher Ni particles present in its structure. The activity tests carried out in focused-microwave reactor system provided more stable product distribution and coke elimination.


Sorption enhanced reforming of ethanol over novel catalysts and microwave reactor application
Sarıyer, Merve; Sezgi, Naime Aslı; Doğu, Timur; Department of Chemical Engineering (2018)
Environmental concerns and fast depletion of fossil fuel resources increased the research activities for the production of hydrogen from renewable sources. Hydrogen production through ethanol steam reforming reaction (SRE) has the potential to be used for its on board production on vehicles and with the sorption enhanced process (SESRE), use of CaO for in-situ removal of produced CO2 increases hydrogen production, decreasing the carbon dioxide and carbon monoxide amount. In this study nickel impregnated SBA...
Hydrogen production from methanol steam reforming in a microwave reactor
Nikazar, Sohrab; Sezgi, Naime Aslı; Doğu, Timur; Department of Chemical Engineering (2019)
Today’s world is facing crucial environmental issues, such as climate change and greenhouse gas emission, mainly attributed to the overusing fossil fuels. An environmentally friendly and sustainable replacement is proton exchange membrane fuel cell system which is a promising technology fed by hydrogen. However, fuel cell’s anode catalyst is sensitive to amount of CO in the feed stream. Steam reforming of methanol is an appropriate method for hydrogen production. Nevertheless, endothermic nature of this rea...
Ethanol steam reforming with zirconia based catalysts
Arslan, Arzu; Doğu, Timur; Department of Chemical Engineering (2014)
Production of hydrogen, which has been considered as an environmentally clean ideal energy carrier, from abundant energy resources cleanly and renewably is essential to support sustainable energy development. Hydrogen production from bio-ethanol by steam reforming process is a promising approach, since bio-ethanol is the most available bio-fuel in the world and steam reforming of ethanol yields formation of 6 moles of hydrogen per mole of ethanol. Support material used for nickel based catalysts plays a cru...
Novel bimetallic mesoporous catalysts for hydrogen production through steam reforming of ethanol
Şener, Canan; Doğu, Timur; Doğu, Gülşen; Department of Chemical Engineering (2012)
Hydrogen is considered as an alternative clean energy source due to the depletion of fossil fuels and related environmental problems. Steam reforming of bio-ethanol, has excellent potential for hydrogen production, with CO2 neutrality. Ni, Pd and Pt are the most active metals for steam reforming of ethanol. Improving catalytic activity of supported Ni catalyst by incorporating small amount of Pd or Pt is a successful method for increasing activity and stability of the catalyst. Development of active and sta...
Preparation and characterization of zeolite confined cobalt(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane
Rakap, Murat; Özkar, Saim; Department of Chemistry (2011)
Because of the growing concerns over the depletion of fossil fuel supplies, environmental pollution and global warming caused by a steep increase in carbon dioxide and other greenhouse gases in the atmosphere, much attention has been given to the development of renewable energy sources that are the only long-term solution to the energy requirements of the world’s population, on the way towards a sustainable energy future. Hydrogen has been considered as a clean and environmentally benign new energy carrier ...
Citation Formats
S. Gündüz, “Hydrogen production from ethanol over mesoporous alumina based catalysts and microwave reactor applications,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.