Flutter characteristics of plate like structures

Dalmış, Mevlüt Burak
In this study, flutter characteristics of plate like structures in incompressible flow are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). Firstly, a rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is investigated. In this case, analysis and test results are in good agreement with each other. Second test item is a 1/10 scaled F-16 wing like PC plate. In this case, the plate is capable of carrying external stores in different dimensions. Two different flutter analysis are conducted for this plate by using two different fixed end structural boundary conditions. In the first boundary condition, the plate is fixed from its bottom; in the second boundary condition, the plate is fixed from both bottom and side surfaces of the plate. Moreover, modal test is conducted by impact hammer for this test item. Results of this modal test indicates that modal analysis result using the first structural boundary condition, in which only bottom of the plate is fixed, is more realistic than the modal analysis result using the second structural boundary condition, in which the bottom of the plate with its side surfaces are kept fixed. Therefore, even if the modal analysis results are used for the flutter analysis, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results. A comparison between two different solution methods of ZAERO©, namely K-method and g-method, is also done by using the results of second test item.


Aeroelastic analyses and tests of a wing like structure with payload
Serin, Özgür; Perçin, Mustafa; Department of Aerospace Engineering (2019)
In this study, a wing-like structure with three payloads was examined from the point of flutter characteristic by performing frequency domain flutter analyses in a commercial software ZAERO© and conducting wind tunnel flutter tests in Ankara Wind Tunnel (ART) test facility. Based upon the aeroelastic certification flow admitted by the independent aviation authorities being active across the globe, for each configuration of the wing-like structure, finite element models were created using Altair Hypermesh© s...
Atmospheric boundary layer simulation in a short wind tunnel
Shojaee, S. M. N.; Uzol, Oğuz; Kurç, Özgür (2014-02-01)
This paper presents the design, computational analysis and experimental study of passive device configurations which utilized in the Ankara Wind Tunnel to simulate the atmospheric boundary layer within the test section. The study here is part of a joint project between the Aerospace and Civil Engineering Departments at Middle East Technical University, which involves testing of high-rise building models in the Ankara Wind Tunnel. The design consists of spires and rows of cubical surface roughness elements a...
Flow Structure on Nonslender Delta Wing: Reynolds Number Dependence and Flow Control
Zharfa, Mohammadreza; Ozturk, Ilhan; Yavuz, Mehmet Metin (2016-03-01)
The flow structure over a 35 deg swept delta wing is characterized in a low-speed wind tunnel using techniques of laser-illuminated smoke visualization, laser Doppler anemometry, and surface-pressure measurements. The effects of Reynolds numbers and attack angles on the evaluation of flow patterns are addressed within the broad range of Reynolds number 10(4) < Re < 10(5) and attack angle 3 deg < alpha < 10 deg. In addition, the effect of steady blowing through the leading edges of the wing on flow structure...
Aeroelastic analysis of composite wings and wind turbine blades including geometrical nonlinearity and compressibilty
Farsadi, Touraj; Kayran, Altan; Department of Aerospace Engineering (2018)
Aeroelastic behaviour of composite wings and wind turbine blades in the incompressible and compressible flow regimes is investigated utilizing a geometrically nonlinear Thin Wall Beam (TWB) theory incorporating non uniform geometric features such as sweep, taper, pretwist, warping inhibition and transverse shear strain. The structural equations of motion are obtained in the most general form based on the kinematic relations governing thin walled beams, including the nonlinear strain displacement relations, ...
Experimental analysis of flow structure on moderate sweep delta wing
Öztürk, İlhan; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2014)
Experimental investigation of flow over a 45° moderate swept delta wing is performed using laser illuminated smoke visualization, surface pressure measurements, and Laser Doppler Anemometry (LDA) techniques in low-speed wind tunnel. The formation of leading-edge vortices and their breakdown, and three-dimensional separation from the surface of the wing are studied at broad range of attack angles and Reynolds numbers. Smoke visualizations are performed at three different cross flow planes along with vortex a...
Citation Formats
M. B. Dalmış, “Flutter characteristics of plate like structures,” M.S. - Master of Science, Middle East Technical University, 2014.