Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Atmospheric boundary layer simulation in a short wind tunnel
Download
index.pdf
Date
2014-02-01
Author
Shojaee, S. M. N.
Uzol, Oğuz
Kurç, Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
0
downloads
Cite This
This paper presents the design, computational analysis and experimental study of passive device configurations which utilized in the Ankara Wind Tunnel to simulate the atmospheric boundary layer within the test section. The study here is part of a joint project between the Aerospace and Civil Engineering Departments at Middle East Technical University, which involves testing of high-rise building models in the Ankara Wind Tunnel. The design consists of spires and rows of cubical surface roughness elements at the inlet. The preliminary computational analysis shows that the current design may provide the desired boundary layer thickness at about 4.0 m downstream of the test section inlet, which leaves enough room for the building models to be placed in the test section. This study also helps obtaining a preliminary understanding of the boundary layer development and reducing the tunnel operation time and cost during the actual experimentation phase. At the end, experimental results show acceptable results of this study.
Subject Keywords
Passive device
,
Spires
,
Exposure
,
Modeling
,
Short wind tunnel
URI
https://hdl.handle.net/11511/41056
Journal
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1007/s13762-013-0371-4
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Design of a traverse system for the characterization of a large-scale wind tunnel
Ulu, Tunahan; Perçin, Mustafa; Department of Aerospace Engineering (2022-9)
This study presents the design and simulations of a traverse system and preliminary characterization measurements of the RÜZGEM large-scale wind tunnel. In the first phase of the study, the traverse system was simulated aerodynamically using computational fluid dynamics (CFD) tools. The effects of the rectangular, whole profile and partial profile traverse mechanisms on the measurements were examined. The probe lengths were studied in detail to determine the most suitable length. According to the simulation...
Flutter characteristics of plate like structures
Dalmış, Mevlüt Burak; Yazıcıoğlu, Yiğit; Durak, Burak; Department of Mechanical Engineering (2014)
In this study, flutter characteristics of plate like structures in incompressible flow are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). Firstly, a rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is investigated. In this case, analysis and test results are in good agreement with each other. Second test item is a 1/10 scaled F-16 wing like PC plate. In this case, the plate is capable of carr...
Computational fluid dynamics modelling of store separation using grid method
Demir, Görkem; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2017)
In this study, two different wind tunnel techniques, captive trajectory and the grid surveying method, were implemented to computational fluid dynamics (CFD) and used to calculate the trajectory of a store. The main purpose of this thesis is to demonsrate that grid method is an alternative method to those already used as it provides flexibility to store separation problems and can be used during the design process. EGLIN test geometry was used to validate the analyses results because it provided existing wi...
Dynamic modelling and simulation of a wind turbine
Altuğ, Ayşe Hazal; Yavrucuk, İlkay; Department of Aerospace Engineering (2015)
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments...
Optimizing Single-Span Steel Truss Bridges with Simulated Annealing
Hasançebi, Oğuzhan (2010-11-01)
This study presents applications of a simulated annealing integrated solution algorithm to the optimum design of single-span steel truss bridges subjected to gravity loadings. In the optimum design process of a bridge the members are sized simultaneously as the coordinates of the upper chord nodes are determined such that the least design weight is attained for the structure. The design constraints and limitations are imposed in accordance with serviceability and strength provisions of ASD-AISC (Allowable S...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. M. N. Shojaee, O. Uzol, and Ö. Kurç, “Atmospheric boundary layer simulation in a short wind tunnel,”
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
, pp. 59–68, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41056.