Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Control of flow structure on low swept delta wing with staedy leading edge blowing
Download
index.pdf
Date
2014
Author
Zharfa, Mohammadreza
Metadata
Show full item record
Item Usage Stats
270
views
134
downloads
Cite This
Unmanned Combat Air Vehicles (UCAVs), Unmanned Air Vehicles (UAVs) and Micro Air Vehicles are becoming extremely popular due to introducing many advantages to defense industry and aeronautical field. In line with this, the aerodynamics of these vehicles, which can be represented by simplified planforms, including delta wings, have been of considerable interest in recent years. This interest has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35° angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to wing attack angle and Reynolds number. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Computer controlled air injection system is designed and applied to the delta wing used in flow characterization. Effect of steady blowing through the leading edges of the wing on flow structure is studied to delay or to prevent three-dimensional surface separation and possibly to reduce the buffeting on the wing surface. Effective blowing coefficient ranges for flow control are determined.
Subject Keywords
Airplanes
,
Leading edges (Aerodynamics).
,
Vortex-motion.
,
Flow visualization.
,
Fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12618382/index.pdf
https://hdl.handle.net/11511/24361
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Control of flow structure on low swept delta wing using unsteady leading edge blowing
Çetin, Cenk; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2016)
There is an increasing interest in recent years in the aerodynamics of low swept delta wings, which can be originated from simplified planforms of Unmanned Air Vehicles (UAV), Unmanned Combat Air Vehicles (UCAV) and Micro Air Vehicles (MAV). In order to determine and to extend the operational boundaries of these vehicles with particular interest in delaying stall, complex flow structure of low swept wings and its control needs to be understood. Among different flow control strategies, blowing through differ...
Control of flow structure on 70° swept delta wing with along-the-core blowing using numerical modeling
Küçükyılmaz, İbrahim Can; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2016)
In recent years, interest has increased in Unmanned Combat Air Vehicles (UCAVs) and Unmanned Air Vehicles (UAVs), which can be represented by simplified planforms including delta wings. Delta wings experience the formation of two counter-rotating vortices on the leeward side of the planform due to the shear layer separated from the windward side. At sufficiently high angle of attack, these vortices undergo sudden expansion, called vortex breakdown/burst, which is quite detrimental considering the aerodynami...
Development and implementation of novel flow control techniques for nonslender delta wings
Çelik, Alper; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Understanding and controlling the physical phenomenon behind the aerodynamics of low to moderate swept delta wings has been a challenge for researchers during the last few decades, which is stimulated by their widespread use in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs). Although delta wings are capable of generating high lift and stable flight performance at high angle of attack, the problems related to lack of conventional flow control surfaces compel the researchers to explore new...
Control of flow structure on 45 degree swept delta wing using passive bleeding
Karagöz, Burcu; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
In recent decades, researchers aim to understand and control the physical phenomenon behind the complex flow structure of low swept delta wings arising with their widespread use in Unmanned Air Vehicles (UAV), Unmanned Combat Air Vehicles (UCAV) and Micro Air Vehicles (MAV). In order to extend the working capabilities of these vehicles with having stable flight performance, detailed studies on understanding and controlling the flow structures over low swept delta wings are required. The aim of the present s...
Effect of wing heating on flow structure of low swept delta wing
Şencan, Gizem; Yavuz, Mehmet Metin; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2016)
Micro Air Vehicles (MAVs), Unmanned Air Vehicles (UAVs) and Unmanned Combat Air Vehicles (UCAVs), which can be represented by simplified planforms including low swept delta wings, have many advantages in defense industry and aeronautical field. Thus, the aerodynamics of nonslender delta wings including development and application of different flow control techniques have been of considerable interest in recent years. In this study, it is aimed to investigate the effect of heating on the flow structure over...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Zharfa, “Control of flow structure on low swept delta wing with staedy leading edge blowing,” M.S. - Master of Science, Middle East Technical University, 2014.