Control of flow structure on 45 degree swept delta wing using passive bleeding

Download
2017
Karagöz, Burcu
In recent decades, researchers aim to understand and control the physical phenomenon behind the complex flow structure of low swept delta wings arising with their widespread use in Unmanned Air Vehicles (UAV), Unmanned Combat Air Vehicles (UCAV) and Micro Air Vehicles (MAV). In order to extend the working capabilities of these vehicles with having stable flight performance, detailed studies on understanding and controlling the flow structures over low swept delta wings are required. The aim of the present study is to control the flow structure over a non-slender delta wing with sweep angle of  

Suggestions

Control of flow structure on 70° swept delta wing with along-the-core blowing using numerical modeling
Küçükyılmaz, İbrahim Can; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2016)
In recent years, interest has increased in Unmanned Combat Air Vehicles (UCAVs) and Unmanned Air Vehicles (UAVs), which can be represented by simplified planforms including delta wings. Delta wings experience the formation of two counter-rotating vortices on the leeward side of the planform due to the shear layer separated from the windward side. At sufficiently high angle of attack, these vortices undergo sudden expansion, called vortex breakdown/burst, which is quite detrimental considering the aerodynami...
Development and implementation of novel flow control techniques for nonslender delta wings
Çelik, Alper; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Understanding and controlling the physical phenomenon behind the aerodynamics of low to moderate swept delta wings has been a challenge for researchers during the last few decades, which is stimulated by their widespread use in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs). Although delta wings are capable of generating high lift and stable flight performance at high angle of attack, the problems related to lack of conventional flow control surfaces compel the researchers to explore new...
Control of flow structure on low swept delta wing with staedy leading edge blowing
Zharfa, Mohammadreza; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2014)
Unmanned Combat Air Vehicles (UCAVs), Unmanned Air Vehicles (UAVs) and Micro Air Vehicles are becoming extremely popular due to introducing many advantages to defense industry and aeronautical field. In line with this, the aerodynamics of these vehicles, which can be represented by simplified planforms, including delta wings, have been of considerable interest in recent years. This interest has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate val...
Control of flow structure on low swept delta wing using unsteady leading edge blowing
Çetin, Cenk; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2016)
There is an increasing interest in recent years in the aerodynamics of low swept delta wings, which can be originated from simplified planforms of Unmanned Air Vehicles (UAV), Unmanned Combat Air Vehicles (UCAV) and Micro Air Vehicles (MAV). In order to determine and to extend the operational boundaries of these vehicles with particular interest in delaying stall, complex flow structure of low swept wings and its control needs to be understood. Among different flow control strategies, blowing through differ...
Effect of thickness-to-chord ratio on flow structure of a low swept delta wing
Gülsaçan, Burak; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Low swept delta wings, which are the simplified planforms of Unmanned Air Vehicles (UAVs), Unmanned Combat Air Vehicles (UCAVs) and Micro Air Vehicles (MAVs), have drawn considerable attention in recent years. In order to characterize and improve the operational parameters of these vehicles, the flow physics over low swept delta wings and its control should be well understood. In literature, the effect of thickness-to-chord ratio (t/C) on aerodynamic performance of a delta wing was studied on high and moder...
Citation Formats
B. Karagöz, “Control of flow structure on 45 degree swept delta wing using passive bleeding,” M.S. - Master of Science, Middle East Technical University, 2017.