Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of effects of bird strike problem on wing leading edge by using explicit finite element method
Download
index.pdf
Date
2015
Author
Dede, Oğuzhan
Metadata
Show full item record
Item Usage Stats
383
views
856
downloads
Cite This
In aviation industry, bird strike problem causes structural damage and threats to flight safety. Nowadays, designed and produced aircraft have to satisfy “safe flight and landing” requirements. The behavior of the aircraft components during bird strike have be to investigated by numerical methods or experiments. Results obtained from numerical analysis and /or experiments have to be carefully studied to optimize the aircraft structures. However, experiments of bird strike are very costly and require qualified test infrastructures. Also, trial and error method is used in test procedures and it leads to consumption of time and money for aircraft producers. Use of finite element method is continuously increasing to analyze bird strike problems to reduce time and money requirement to validate aircraft structures. The main aim of this thesis is to apply the explicit finite element analysis procedure for the analysis of bird strike problem on the leading edge of the wing. In addition, another aim of this thesis is to show capabilities and effectiveness of honeycomb material against bird strike when used in the leading edge. For this purpose, LSTC Ls-Dyna is chosen as the explicit finite element solver for the bird strike analysis. To model the soft body impactor (bird), a small benchmark study is performed among different solution formulations such as Eulerian, ALE (Arbitrary Lagrangian Eulerian) and SPH (Smoothed Particle Hydrodynamics). As results of the benchmark study, SPH is chosen as the suitable formulation to model the bird by comparing the deformation and impact force results. Similarly, suitable material model is selected to model the metallic aircraft structure by conducting a benchmark study between elasto-plastic and elasto-viscoplastic material models. Johnson Cook material model is decided to be used for modeling of metallic aircraft structures. Additionally, laminated composite fabric material model which is available in Ls-Dyna material model library is used for modeling the composite wing leading edge. Material characterization test results are used to determine material parameters and coupon simulations are performed to validate material model of the composite fabric material. After the selection of suitable solution formulation for soft body impactor and material models for metallic and composite aircraft structure, bird strike analyses on the wing leading edge are performed for both metallic and composite case studies. Effect of bird strike is investigated for metallic and composite leading edges and it is clearly seen that bird strike problem may lead to catastrophic failure during flight if proper design measures are not taken. Finally, reinforcement study of the wing leading edge is done by using the honeycomb material. Honeycomb material is added to metallic and composite wing leading edge and bird strike analyses repeated to investigate the effect of honeycomb on the bird strike problem. It is seen that honeycomb exhibits excellent stiffness against soft body impact. It is concluded that honeycomb materials are very effective materials for bird strike problem with low ratio of weight / impact stiffness.
Subject Keywords
Leading edge flaps.
,
Leading edges (Aerodynamics).
,
Airplanes
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12618432/index.pdf
https://hdl.handle.net/11511/24367
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of effects of bird strike on wing leading edge by using explicit finite element method
Dede, Oğuzhan; Kayran, Altan (null; 2015-09-10)
In aviation industry, bird strike problem causes structural damage and threats to flight safety. Nowadays, designed and produced aircraft have to satisfy “safe flight and landing” requirements. The behavior of the aircraft components during bird strike have to be investigated by numerical methods or experiments. Results obtained from numerical analysis and /or experiments have to be carefully studied to optimize the aircraft structures. The main aim of this study is to apply the explicit finite element anal...
Development of a prediction model using fully connected neural networks in the analysis of composite structures under bird strike
Hasilci, Zehra; BOĞOÇLU, Muharrem Erdem; DALKILIÇ, Ahmet Selim; Kayran, Altan (2022-02-01)
Bird strike is one of the most hazardous issues facing global aviation. In the present study, a hybrid methodology is developed utilizing, automated data generation and fully connected neural networks to practically and reliably obtain the global deformation of composite structures subject to bird strike. The validation of the proposed numerical bird strike model is accomplished by making comparisons with the available experimental data from three different resources in the literature on the chicken and gel...
Determination of dynamically equivalent fe models of aircraft structures by using modal test data
Karaağaçlı, Taylan; Özgüven, Hasan Nevzat; Yıldız, Erdinç N.; Department of Mechanical Engineering (2010)
Reliable flutter analysis of aircraft structures is a major requirement to determine safe flight envelops. Dynamically equivalent finite element model of an aircraft structure correlating well with experimental modal is a major requirement for a reliable flutter analysis. Currently available model updating techniques require enormous time and engineering work to achieve appropriate finite element models of aircraft structures. The method developed within the scope of this thesis work aims to remove importan...
Effect of thickness-to-chord ratio on aerodynamics of non-slender delta wing
Sharifi Ghazijahani, Mohammad; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2018)
Flow characterization over delta wings have gained attention in recent decades due to their prevailing usage in designs of unmanned air vehicles (UAVs). In literature,only a few studies have reported wing thickness effect on both the aerodynamic performance and detailed flow structure over delta wings. In the present investigation, the effect of thickness-to-chord (t/C) ratio on aerodynamics of a non-slender delta wing with 45 degree sweep angle is characterized in a low-speed wind tunnel using laser illumi...
Numerical investigation of thickness-to-chord ratio on aerodynamic characteristics and flow field of a low swept delta wing
Cesur, İsmail Sadi; Albayrak, Kahraman; Department of Mechanical Engineering (2019)
Recent years revealed the increased interest in Unmanned Combat Air Vehicles (UCAVs) and Unmanned Air Vehicles (UAVs) which utilize delta wing planforms, making the Delta wing studies more prominent. Delta wings are characterized by two counter-rotating vortices on leading edges formed by the detached shear layer from the windward side of the planform. Those vortical structures lower the pressures on the suction side of the wing therefore contributes to the increase of the lifting and maneuvering capacity o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Dede, “Investigation of effects of bird strike problem on wing leading edge by using explicit finite element method,” M.S. - Master of Science, Middle East Technical University, 2015.