Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Forward problem of electrocardiography in terms of 3D transmembrane potentials using COMSOL
Download
index.pdf
Date
2015
Author
Bedir, Gizem
Metadata
Show full item record
Item Usage Stats
351
views
142
downloads
Cite This
Computation of body surface potentials from equivalent cardiac sources is called as forward problem of electrocardiography (ECG). There exist different solution meth- ods for solving the forward ECG problem. These solution methods depend on the choice of the equivalent cardiac sources. In this study, bidomain model based trans- membrane potential (TMP) distribution is used as equivalent cardiac source to exam- ine the cellular electrophysiology macroscopically. With this type of source defini- tion, the TMP values are linearly related to the body surface potentials, and this linear relationship is modeled by a forward transfer matrix, T. Then the forward problem of ECG is solved in order to obtain T, using finite element method (FEM). In the first part of this study, both the heart and torso are assumed as two concentric spheres and electrically isotropic regions. First forward problem of ECG is solved both analytically and numerically, and then a transfer matrix that relates the TMPs to the body surface potentials is constructed. Accuracy of the transfer matrix is ver- ified by the analytical solution. Numerical solutions are done using COMSOL Mul- tiphysics Software which provides easy mesh generation by discretizing the solution domain with FEM. Flexibility of arranging both mesh element sizes and numbers in the solution domain makes COMSOL preferable for this study. In the second part of the study, a spherical heart is placed inside a realistic torso geometry and the forward problem is solved again to obtain the transfer matrix.
Subject Keywords
Electrocardiography.
,
Heart
,
Numerical analysis.
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12618497/index.pdf
https://hdl.handle.net/11511/24423
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study
Onak, Onder Nazim; Serinağaoğlu Doğrusöz, Yeşim; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2019-05-01)
In the inverse electrocardiography (ECG) problem, the goal is to reconstruct the heart's electrical activity from multichannel body surface potentials and a mathematical model of the torso. Over the years, researchers have employed various approaches to solve this ill-posed problem including regularization, optimization, and statistical estimation. It is still a topic of interest especially for researchers and clinicians whose goal is to adopt this technique in clinical applications. Among the wide range of...
Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem
Mazloumi Gavgani, Alireza; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2011)
The main goal in inverse and forward problems of electrocardiography (ECG) is to better understand the electrical activity of the heart. In the forward problem of ECG, one obtains the body surface potential (BSP) distribution (i.e., the measurements) when the electrical sources in the heart are assumed to be known. The result is a mathematical model that relates the sources to the measurements. In the inverse problem of ECG, the unknown cardiac electrical sources are estimated from the BSP measurements and ...
Improved performance of Bayesian solutions for inverse Electrocardiography using multiple information sources
Serinağaoğlu Doğrusöz, Yeşim; MACLEOD, Robert (2006-10-01)
The usual goal in inverse electrocardiography (ECG) is to reconstruct cardiac electrical sources from body surface potentials and a mathematical model that relates the sources to the measurements. Due to attenuation and smoothing that occurs in the thorax, the inverse ECG problem is ill-posed and imposition of a priori constraints is needed to combat this ill-posedness. When the problem is posed in terms of reconstructing heart surface potentials, solutions have not yet achieved clinical utility; limitation...
Comparison of ML and MAP parameter estimation techniques for the solution of inverse electrocardiography problem
Erenler, Taha; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2018)
This study aims to determine the cardiac electrical activity from body surface potential measurements. This problem is called the inverse problem of electrocardiography. Reconstruction of the cardiac electrical activity from the body surface potential measurements is not an easy task, since this problem has an ill-posed nature due to attenuation and spatial smoothing inside the medium between the source and the measurement sites, meaning that even small errors in the mathematical model or noise in the measu...
Wireless Monitoring of ECG Signal in Infants Using SWM and DWT Techniques
Rashid, Haroon; Qadir, Zakria; Zia, Moaz; Nesimoglu, Tayfun (2018-11-02)
Human heart cardiac muscles activities can be represented graphically using electrical impulses. Electrocardiography (ECG) signals are very important for physicians to diagnose heart disease. In this study, Bluetooth device is used to transmit data wirelessly. For this purpose, the generated signal from heart beat sensor is analyzed in MATLAB using Support Vector Machine (SVM) and Discrete Wavelet Transform (DWT) techniques. ECG Simulator compares the actual signal of infants with the reference signal and n...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bedir, “Forward problem of electrocardiography in terms of 3D transmembrane potentials using COMSOL,” M.S. - Master of Science, Middle East Technical University, 2015.