Development of beam scheduling algorithm for frequency diverse array /

Çetiner, Ramazan
Electronic scanning is the most desirable feature of radar systems. With electronic scanning, it is possible to steer the main beam of an array antenna instantaneously into a desired direction where no mechanical mechanism is involved in the scanning process. Electronic scanning methods including phase scanning, time delay scanning, and frequency scanning have been used in various radar applications; however new and cheaper scanning methods are still being investigated. It is the purpose of this thesis to investigate an array configuration called frequency diverse array (FDA), which gives rise to range, time, and angle dependent scanning without using phase shifters. In this study, mathematical analysis of FDA are made and DDS based FDA beamforming network is designed. Also FDA implementation is realized with this network. Justification of the mathematical derivations is made by the results of the measurements with the implemented structure. Besides, simulations and measurements of the array with various amplitude tapering coefficients are performed. The drawbacks are also reported during the study, which will be useful for future studies on the subject.


An Investigation of beam scanning of arrays on cylindrical, conical and spherical surfaces
Takak, Yücel; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2015)
Recently, wide angle scanning antennas are often required especially in many radar applications. It is known that planar arrays have limited scan range without beam deformation. In this study design and production steps for wide angle scanning antenna arrays conformed on cylindrical, conical and spherical surfaces that operate at X-Band are investigated. Antenna elements used in these conformal arrays are designed using full wave electromagnetic solver tool HFSS. A MATLAB code for obtaining array patterns i...
Design of a novel low-loss frequency scanning antenna
Alkış, Sena; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In antenna engineering, frequency scanning arrays are well-known with their ability to provide low-cost electronic scanning capability. However, in many studies on these arrays, the loss of the structure is overlooked. In this study, a novel low-loss frequency scanning antenna structure is proposed. The design is a composition of a feeding waveguide utilized for frequency scanning in one plane and an array of eight elements in the other plane, which is repeated along the frequency scanning axis. The loss of...
A Survey on s-band phase shifters
Kızıltaş, Bilgin; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2013)
Phase shifters are essential components of beam directing in electronically scanned phased array radar transmitters and receivers that are used in electronic warfare applications for surveillance and self-protection reasons. In this thesis, initially, fundamentals of phase shifters and various phase shifter topologies are introduced. Afterwards, two-stage all pass filter based phase shifter, eight-section loaded-line phase shifter, aperture coupler based phase shifter and double shunt stub phase shifter cir...
Method of moments analysis of slotted waveguide antenna arrays
Altuntaş, Abdülkerim; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
Slotted waveguide antenna arrays are used extensively in many applications because of their high power handling capability, planarity, low loss and reduced profile. After the synthesis of such an array, the design should be verified by analyzing the array with an efficient simulation tool which is accurate, fast and flexible. Although FEM (Finite Element Method) based commercial softwares are very accurate and flexible, they are not sufficiently fast especially when it comes to optimization and fine tuning....
Subspace based radar signal processing methods for array tapering and sidelobe blanking
Dinler, Doğancan; Candan, Çağatay; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2017)
The discretization of the signal impinging on several hundreds, even thousands, of receiving elements has become a common problem in modern phased array radar systems along with the developments in the digital signal processing. The spatial and temporal processing of such large dimensional data is too challenging for all steps of signal processing. This thesis is focused on the subspace methods that making the processing of the full dimensional data feasible at reduced dimensions. The first objective of the...
Citation Formats
R. Çetiner, “Development of beam scheduling algorithm for frequency diverse array /,” M.S. - Master of Science, Middle East Technical University, 2015.