Design of a novel low-loss frequency scanning antenna

2019
Alkış, Sena
In antenna engineering, frequency scanning arrays are well-known with their ability to provide low-cost electronic scanning capability. However, in many studies on these arrays, the loss of the structure is overlooked. In this study, a novel low-loss frequency scanning antenna structure is proposed. The design is a composition of a feeding waveguide utilized for frequency scanning in one plane and an array of eight elements in the other plane, which is repeated along the frequency scanning axis. The loss of the antenna is relatively low thanks to using a metallic waveguide as a beamformer and a stripline antenna as the array element. Each stripline eight-element array is fed via a novel coupling structure, which is a stripline 90-degree hybrid coupler whose input arms are inserted into the waveguide. The coupling amplitude of the structure is controlled by the insertion depth of the 90-degree hybrid couplers, which are exploited for controlling the amplitude distribution along the frequency scanning axis. The study focuses on all aspects of the design procedure and the followed methodology, as well as difficulties came across throughout the design and the methods to cope with them.

Suggestions

Analysis of a calibration method for airborne receive-only phased array antennas with self-alignment
Elik, Furkan Bahadır; Demir, Şimşek; Department of Electrical and Electronics Engineering (2022-9-15)
The calibration of the phased array antennas plays crucial role to ensure the performance of the beam steering capability. Most of the guided missiles utilize phased arrays, thus, the calibration routines should be optimized. Since guided missiles are spatially limited, calibration hardware should not introduce new geometry to the antenna. This limits possible calibration methods of the antennas on the missiles. This study develops a calibration method for semi-active guided missiles and analyzes this metho...
Design of series-fed printed slot antenna arrays excited by microstrip lines
İncebacak, Mustafa; Alatan, Lale; Department of Electrical and Electronics Engineering (2010)
Series-fed printed slot antenna arrays excited by microstrip lines are low profile, easy to manufacture, low cost structures that found use in applications that doesn’t require high power levels with having advantage of easy integration with microwave front-end circuitry. In this thesis, design and analysis of microstrip line fed slot antenna arrays are investigated. First an equivalent circuit model that ignores mutual coupling effects between slots is studied. A 6-element array is designed by using this e...
Design of Irregularly Shaped Patch Antennas by using the Multiport Network Model
Sener, Goker; Alatan, Lale; Kuzuoğlu, Mustafa (2008-07-11)
The multiport network model (MNM) is an analytical method that is used to analyze microstrip antennas. MNM is based on defining ports along the periphery of the patch and evaluating the impedance matrix corresponding to these ports by using the Greenpsilas function for the cavity under the patch. For regular rectangular, triangular and circular patches, analytical expressions for the Greenpsilas function are available. In the analysis of irregular patches, Greenpsilas functions cannot be calculated explicit...
Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm
Ozgun, O; Mutlu, S; Aksun, MI; Alatan, Lale (2003-08-01)
Dual-frequency operation of antennas has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services operating at two different frequency bands, and services of PCS and IMT-2000 applications. Although there are various techniques to achieve dual-band operation from various types of microstrip antennas, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity-model based simulation tool alon...
Modified neural multiple source tracking algorithm in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-15)
In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms [1]. In this paper mutual coupling effects on Modified Neural Multiple Source Tracking Algorithm (MN-MUST) has been studied. MN-MUST algorithm applied to the Uniform Circular Array (UCA) geometry for the first time. The validity of MN-MUST algorithm in the presence of mutual coupling has been proved for both Uniform Linear Array (ULA) and UCA. Simulation results of MN-MUST algorithm are provided fo...
Citation Formats
S. Alkış, “Design of a novel low-loss frequency scanning antenna,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2019.