Tuned vibration absorber design for a supported hollow cylindrical structure

Download
2015
Aksoy, Tuğrul
Supported hollow structural elements have a usage area in various types of structures or machines. They exhibit an oscillatory behavior under various excitations since their modal frequencies are quite low. This behavior results in vibrations which reach huge amplitudes especially at the tip of the structures. This situation may be harmful for the structural integrity of the structures and may reduce the service life. Moreover, these vibrations can distort the performance of the machines’ which involve the supported hollow structure. In this thesis study, a tuned vibration absorber (also called as tuned mass damper) design is proposed to suppress the vibrations of a supported hollow cylindrical structure under impulsive loading. Within the scope of this study, a tuned vibration absorber (TVA) designed and applied on a sample supported hollow cylinder structure. Then, the mitigation in vibration amplitudes as a result of this application is investigated. In order to see the effectiveness of the TVA application, a physical structure involving a supported hollow cylindrical structure is designed and manufactured. TVA is designed by considering the modal parameters of this physical structure and applied on it. Experiments are carried out in order to verify the effectiveness of the TVA application on the dynamics of the system. After then, dynamic test are carried out on the system and the mitigation in vibration levels is investigated as the result of the TVA application.

Suggestions

Robustness Analysis of Intentional Mistuning Patterns in Randomly Mistuned Bladed Disk Assemblies
Yumer, M. E.; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2010-09-22)
It is known that bladed disks, which are usually designed as cyclically symmetric structures, undergo considerable amount of forced response amplitude magnification due to the phenomenon called mistuning. Mistuning is inevitable for any cyclically symmetric bladed disk assembly since it is caused by manufacturing tolerances, material properties and operational wear. Since reducing the level of mistuning beyond certain limits is not possible with the current technology, the attempts are rather made to reduce...
Powder metal development for electrical motor applications
Bayramli, E; Golgelioglu, O; Ertan, Hulusi Bülent (2005-04-10)
In this paper, first the development process of a soft magnetic composite material for use in motor applications is described. Various mixtures are prepared to identify an optimum mix. It is found that highest packing is achieved for a mixing ratio of 45 % of 170 mesh particle size with 55 % 325 mesh particle size. The coating of the particles is obtained by using the "wetting method". The mechanical properties of the samples; such as stress versus strain, Strain% versus composition%, etc. are given, also s...
Behavior of reinforced concrete deep beam with web openings strengthened with (CFRP) sheet
Jasim, Waleed A.; Tahnat, Yazan B. Abu; Halahla, Abdulsamee M. (2020-08-01)
Deep beams are used in various applications in reinforced concrete (R.C.) structures. There have been continuous efforts to enhance and improve the performance of these crucial elements in (R.C.) structures by using several strengthening techniques such as using the carbon fiber-reinforced polymer (CFRP). However, by exploring the literature, none of the previously conducted experimental tests have studied the propagation of cracks beneath the (CFRP) sheets. In this research, the propagation of the first di...
Magnetic Resonance Signal Analysis in Inhomogenous Magnetic Fields
Arpinar, V. E.; Eyüboğlu, Behçet Murat (2009-09-12)
Nuclear Magnetic Resonance (NMR) systems with inhomogenous main magnetic fields have been satisfactorily used to explore material properties. So that, imaging of biological tissues using Magnetic Resonance Imaging (MRI) systems with inhomogenous main magnetic fields could be explored. In this work, magnetic resonance (MR) signal deviation due to inhomogeneity in the main magnetic field of a MRI system is investigated. This analysis gives the understanding of the effect of inhomogeneity in magnetic field to ...
Pipe flow of a magnetizable fluid in rectangular cavities under magnetic sources
Senel, P.; Tezer, Münevver (2017-10-01)
In this paper, the fully developed flow of an electrically non-conducting, viscous, incompressible, magnetizable fluid is investigated in rectangular pipes with square or rectangular cross-sections under the effect of spatially varying magnetic field. Magnetic field is generated by multiple wires carrying electric current that pass below and above along the pipe. Thus, the problem is reduced to the 2D flow of a magnetizable fluid in the cross-section of the pipe (cavity). Governing equations are solved in t...
Citation Formats
T. Aksoy, “Tuned vibration absorber design for a supported hollow cylindrical structure,” M.S. - Master of Science, Middle East Technical University, 2015.