Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application of spring analogy mesh deformation technique in airfoil design optimization
Download
index.pdf
Date
2015
Author
Yang, Yosheph
Metadata
Show full item record
Item Usage Stats
302
views
170
downloads
Cite This
In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by considering rotating case of an airfoil for both inviscid and viscous meshes. The edge connectivity required in the spring analogy itself is computed by several simple algorithms. It is found that the presence of modified spring analogy technique leads to better solution in mesh deformation technique. Regarding the aerodynamic design optimization, SU2 3.2.9 open source software is used as the CFD Solver. During the computation, the initial mesh used in the optimization is obtained from Pointwise® mesh generation software. OPTLIB Gradient Optimizer of Phoenix Model Center is implemented as the optimization solver. The optimization process is conducted for four different flight conditions. In each flight condition, minimizing airfoil drag becomes the objective function with different angle of attack constraints imposed. Furthermore, several shape parameterizations are utilized. It is found that in each case, optimized airfoil can be found based on the designated design variables.
Subject Keywords
Aerofoils.
,
Aerodynamics.
,
Airplanes
,
Computational fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12618956/index.pdf
https://hdl.handle.net/11511/24932
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Implicit lattice boltzmann method for laminar/turbulent flows
Çevik, Fatih; Albayrak, Kahraman; Department of Mechanical Engineering (2016)
Lattice Boltzmann Method is an alternative computational method for fluid physics problems. The development of the method started in the late 1980s and early 1990s. Various numerical schemes like stream and collide, finite difference, finite element and finite volume schemes are used to solve the discrete Lattice Boltzmann Equation. Almost all of the numerical schemes in the literature are explicit schemes to exploit the natural features of the discrete Lattice Boltzmann Equation like parallelism and easy c...
Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
Application of fully implicit coupled method for 2D incompressible flows on unstructured grids
Zengin, Şeyda; Tarman, Işık Hakan; Department of Engineering Sciences (2012)
In the subject of Computational Fluid Dynamics (CFD), there seems to be small number of important progress in the pressure-based methods for several decades. Recent studies on the implicit coupled algorithms for pressure-based methods have brought a new insight. This method seems to provide a huge reduction in the solution times over segregated methods. Fully implicit coupled algorithm for pressure-based methods is very new subject with only few papers in literature. One of the most important work in this a...
Analysis, design and test of a jet vane based thrust vector control for tactical missiles
Eren, Oğuz; Eyi, Sinan; Department of Aerospace Engineering (2017)
In this thesis, a design effort for a jet vane based Thrust Vector Control (TVC) in the scope of mechanical design, computational analysis and validating test process is executed to be able to find an optimum CFD approach to this kind of work. To do that, a preliminary design phase is initiated with an already optimized geometry which provides an aerodynamic surface to be worked on. After mechanical design approach to the geometry with system requirements, some of the unverified aspects of the design are te...
Incompressible flow simulations using least squares spectral element method on adaptively refined triangular grids
Akdağ, Osman; Sert, Cüneyt; Department of Mechanical Engineering (2012)
The main purpose of this study is to develop a flow solver that employs triangular grids to solve two-dimensional, viscous, laminar, steady, incompressible flows. The flow solver is based on Least Squares Spectral Element Method (LSSEM). It has p-type adaptive mesh refinement/coarsening capability and supports p-type nonconforming element interfaces. To validate the developed flow solver several benchmark problems are studied and successful results are obtained. The performances of two different triangular ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Yang, “Application of spring analogy mesh deformation technique in airfoil design optimization,” M.S. - Master of Science, Middle East Technical University, 2015.