Analysis, design and test of a jet vane based thrust vector control for tactical missiles

Download
2017
Eren, Oğuz
In this thesis, a design effort for a jet vane based Thrust Vector Control (TVC) in the scope of mechanical design, computational analysis and validating test process is executed to be able to find an optimum CFD approach to this kind of work. To do that, a preliminary design phase is initiated with an already optimized geometry which provides an aerodynamic surface to be worked on. After mechanical design approach to the geometry with system requirements, some of the unverified aspects of the design are tested such as validating the materials and assembly connections. From the conclusive design, testing phase of TVC on multi-axis test stand has carried out. For this matter, design criteria of such test stand, calibration procedure, validation and corrective factors for measuring such as alignment, noise filtering has been investigated and conducted. A computational analysis survey has been performed that consisting couple CFD variable parameters which they are mesh dependency and turbulence models. According to collected data, the optimum CFD approach is determined by the error amount between them. As a result, a comparison of the experimental and computational data has been examined to find the loose ends and area of improvements for increasing the accuracy of data.

Suggestions

Application of spring analogy mesh deformation technique in airfoil design optimization
Yang, Yosheph; Özgen, Serkan; Department of Aerospace Engineering (2015)
In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by...
Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
Trajectory optimization of a tactical missile by using genetic algorithm
Özdil, Baran Dilan; Kutay, Ali Türker; Department of Aerospace Engineering (2018)
In this thesis, estimation of an optimal trajectory for a tactical missile is studied. Missile guidance algorithm is developed to achieve a desired mission goal according to some performance criteria and the imposed constraints. Guidance algorithms may include trajectory optimization to shape the whole trajectory in an optimal way, so that the desired performance needs such as maximum impact velocity, minimum time-of-flight or specific crossing angles can be satisfied. By performing missile path planning, a...
Numerical calculation of backfilling of scour holes
Sumer, B Mutlu; Baykal, Cüneyt; Fuhrman, David R; Jacobsen, Niels G; Fredsoe, Jorgen (2014-12-04)
A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of separate bed and suspended load descriptions, the latter based on a turbulent diffusion equation coupled with a reference concentration function near the sea bed boundary. Bed morphology is based on the sediment continu...
Numerical simulation of lateral jets in supersonic crossflow of missiles using computational fluid dynamics
Dağlı, Efe Can; Aksel, M. Haluk.; Department of Mechanical Engineering (2019)
In this thesis, numerical simulation method for modelling lateral jet in supersonic crossflow is presented. Lateral jet control provides high maneuverability to the missile at difficult flow conditions. Besides, jet in a crossflow case has a highly complicated flow domain which should be examined using numerical or experimental methods. In this study, numerical methods are used. The thesis consists of two main sections. In the first section, a validation study is conducted for numerical simulation method us...
Citation Formats
O. Eren, “Analysis, design and test of a jet vane based thrust vector control for tactical missiles,” M.S. - Master of Science, Middle East Technical University, 2017.