Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biological hydrogen production by using co-cultures of PNS bacteria
Download
index.pdf
Date
2012
Author
Baysal, Görkem
Metadata
Show full item record
Item Usage Stats
384
views
122
downloads
Cite This
Biological hydrogen production is a renewable, carbon-neutral and clean route for hydrogen production. Purple non-sulfur (PNS) bacteria have the ability to produce biohydrogen via photofermentation process. The type of the bacterial strain used in photofermentation is known to have an important effect on hydrogen yield. In this study, the effect of different co-cultures of PNS bacteria on photofermentation process was investigated in search of improving the hydrogen yield. For this purpose, growth, hydrogen production and substrate utilization of single and co-cultures of different PNS bacteria (R. capsulatus (DSM 1710), R. capsulatus hup- v (YO3), R. palustris (DSM 127) and R. sphaeroides O.U.001 (DSM 5864)) were compared on artificial H2 production medium in 150 mL photobioreactors under continuous illumination and anaerobic conditions. In general, higher hydrogen yields were obtained via co-cultivation of two different PNS bacteria when compared with single cultures. Further increase in hydrogen yield was observed with co-cultivation of three different PNS bacteria. Co-cultures of two different PNS bacteria have resulted in up to 1.4 and 2.1 fold increase in hydrogen yield and hydrogen productivity. Whereas co-cultures of three different PNS bacteria have resulted in up to 1.6 and 2.0 fold increase in hydrogen yield and hydrogen productivity compared to single cultures. These results indicate that, defined co-cultures of PNS bacteria produce hydrogen at a higher yield and productivity, due most probably to some synergistic relationship. Further studies regarding the physiological and molecular changes need to be carried out for deeper understanding of the mechanism of hydrogen production in co-cultures.
Subject Keywords
Bacteria.
,
Hydrogen.
,
Bioreactors.
URI
http://etd.lib.metu.edu.tr/upload/12615001/index.pdf
https://hdl.handle.net/11511/21925
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Kinetic approach for the purification of nucleotides with magnetic separation
Tural, Servet; Tural, Bilsen; Ece, Mehmet Sakir; Yetkin, Evren; Özkan, Necati (2014-11-01)
The isolation of beta-nicotinamide adenine dinucleotide is of great importance since it is widely used in different scientific and technologic fields such as biofuel cells, sensor technology, and hydrogen production. In order to isolate beta-nicotinamide adenine dinucleotide, first 3-aminophenyboronic acid functionalized magnetic nanoparticles were prepared to serve as a magnetic solid support and subsequently they were used for reversible adsorption/desorption of beta-nicotinamide adenine dinucleotide in a...
Biohydrogen production from beet molasses by sequential dark and photofermentation
Ozgur, Ebru; Mars, Astrid E.; Peksel, Beguem; Louwerse, Annemarie; Yucel, Meral; Gündüz, Ufuk; Claassen, Pieternel A. M.; Eroglu, Inci (2010-01-01)
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup(-) mutant, and Rhodopseudomonas palustris) were used for t...
Ethanol steam reforming with zirconia based catalysts
Arslan, Arzu; Doğu, Timur; Department of Chemical Engineering (2014)
Production of hydrogen, which has been considered as an environmentally clean ideal energy carrier, from abundant energy resources cleanly and renewably is essential to support sustainable energy development. Hydrogen production from bio-ethanol by steam reforming process is a promising approach, since bio-ethanol is the most available bio-fuel in the world and steam reforming of ethanol yields formation of 6 moles of hydrogen per mole of ethanol. Support material used for nickel based catalysts plays a cru...
Investigation Of Influencing Factors For Biological Hydrogen Production By R. Capsulatus In Tubular Photo-Bioreactors
Boran, E.; Ozgur, E.; Gebicki, J.; van der Burg, J.; YÜCEL, MUSTAFA; Gündüz, Ufuk; Modigel, M.; Eroglu, I. (2009-05-13)
Biological hydrogen production processes are considered as an environmentally friendly way to produce hydrogen. They offer the chance to produce hydrogen from renewable energy sources, like sunlight and biomass. This study aims the process development for a photo-fermentative hydrogen production by photosynthetic purple-non-sulfur bacteria, Rhodobacter capsulatus, in a large scale (80L) tubular photo-bioreactor, in outdoor conditions, using acetate as carbon source. It was shown that Rhodobacter capsulatus ...
Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation
Ozgur, Ebru; Peksel, Begum (Elsevier BV, 2013-08-01)
Biohydrogen production by sequential operation of dark and photo-fermentation processes is a promising method to produce hydrogen from renewable resources, in a sustainable way. In this study, barley straw hydrolysate (BSEI) dark fermenter effluent (DFE) was used as the biomass feedstock for biohydrogen production through photofermentation. Two different dark fermentation effluents were obtained by performing fermentation with or without addition of yeast extract (YE), using hyperthermophilic dark fermentat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Baysal, “Biological hydrogen production by using co-cultures of PNS bacteria,” M.S. - Master of Science, Middle East Technical University, 2012.