A Comparative study of cuttings transport performance of water versus polymer-based fluids in horizontal well drilling

Download
2015
Allahvirdizadeh, Payam
High drilling fluid circulation rate is often needed for effective transportation of cuttings in horizontal and extended reach wells, which may not be always achievable due to the risk of fracturing the rock by increased bottom hole dynamic pressure and also limit of pumps capacity. Keeping the bottom hole pressure low enough while increasing the flow rate is, therefore, a major challenge in horizontal well drilling operations. A potential solution to this problem would be to use drag reducing additives in drilling fluids. An experimental study is designed and conducted in order to investigate if drag reducing fluid can be effectively used for cuttings transport while drilling horizontal wells. The main objective of this experimental study is to compare the performance of water and a water-based polymer fluid (i.e. PHPA polymer based drilling fluid) in terms of drilled cuttings transportation. Experiments are conducted by using the set-up consisting of a 21 ft long test section with transparent casing with 2.91 ID and an inner pipe of 1.85 OD, which was readily available at the METU-Petroleum and Natural Gas Engineering department laboratories. In this study effect of drilling rate, drilling fluid flow rate and polymer concentration on transportation of the cuttings and pressure losses are investigated while keeping other variables constant. It was observed that using PHPA polymer reduces the frictional pressure losses up to 38% and using the optimum concentration of the PHPA gives the most efficient scenario of transportation of cuttings in horizontal well drilling.

Suggestions

Application of artificial neural networks to predict the downhole inclination in directionally drilled geothermal wells
Burak, Tunç; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2018)
Drilling directionally through naturally fractured geothermal reservoirs is a challenging task due to unexpected changes in inclination and azimuth of the well axis, which causes inefficient weight on bit transfer, decrease in penetration rate, increasing the risk of stuck pipe and problems in while running casings. To predict the sudden changes in inclination while drilling, a back propagation, feed forwarded multi layered artificial neural network (ANN) model, which uses drilling data collected from 12 J-...
A double-porosity model for a fractured aquifer with non-Darcian flow in fractures
Altinors, Altay; Onder, Halil (Informa UK Limited, 2008-08-01)
Non-Darcian flow in a finite fractured confined aquifer is Studied. A stream bounds the aquifer at one side and all impervious Stratum at the other. The aquifer consists of fractures capable of transmitting water rapidly, and Porous blocks which mainly store water. Unsteady flow in the aquifer due to a Sudden rise in the stream level is analysed by the double-porosity conceptual model. Governing equations for the flow in fractures and blocks are developed using the continuity equation. The fluid velocity in...
An Experimental study of silicate polymer gel systems to seal shallow water flow and lost circulation zones in top hole drilling
Ay, Ahmet; Kök, Mustafa Verşan; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2012)
Shallow water flow and lost circulation are frequently encountered problems during drilling top holes of oil, gas or geothermal wells. Plenty of methods have been applied to overcome these problems. Placement of silicate based gel systems is one of the oldest methods to seal such undesired zones. For this study, sodium-silicate based gel system is investigated experimentally. This gel system is deliberately delayed multi-component system mixed as a uniform liquid at the surface but desired to form strong ge...
An investigation of polymerflooding in limestone reservoirs with a bottom water zone
Bağcı, Ali Suat; Hodaie, H (Informa UK Limited, 2003-03-01)
The effects of polymers on waterflooding of a limestone reservoir with or without a bottom water zone, as well as the effect of vertical and horizontal production wells on oil recovery, have been investigated in laboratory models. Sixteen core flood displacement tests were conducted to study the effect of relative oil-water layer thickness, polymer slug size, and well configuration in a production port. A qualitative comparison was made to show the difference between waterflooding and polymer-augmented wate...
An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process
Köken, Mete (American Geophysical Union (AGU), 2008-08-05)
Large eddy simulation (LES) is used to investigate the flow around a vertical spur dike in a straight channel with equilibrium scour bathymetry and the scour mechanisms in the later stages of the erosion deposition process. The equilibrium bathymetry is obtained from an experiment conducted at the same relatively low channel Reynolds number (Re = 18,000). Flow visualizations are used to complement the information obtained from the numerical simulation. The present investigation demonstrates that large-scale...
Citation Formats
P. Allahvirdizadeh, “A Comparative study of cuttings transport performance of water versus polymer-based fluids in horizontal well drilling,” M.S. - Master of Science, Middle East Technical University, 2015.