Moduli space for invariant solutions of Seiberg-Witten equations

Download
1999
Uğuz, Muhiddin

Suggestions

Equivariant cross sections of complex Stiefel manifolds
Onder, T (Elsevier BV, 2001-01-16)
Let G be a finite group and let M be a unitary representation space of G. A solution to the existence problem of G-equivariant cross sections of the complex Stiefel manifold W-k(M) of unitary k-frames over the unit sphere S(M) is given under mild restrictions on G and on fixed point sets. In the case G is an even ordered group, some sufficient conditions for the existence of G-equivariant real frame fields on spheres with complementary G-equivariant complex structures are also obtained, improving earlier re...
Automorphisms of complexes of curves on odd genus nonorientable surfaces
Atalan Ozan, Ferihe; Korkmaz, Mustafa; Department of Mathematics (2005)
Let N be a connected nonorientable surface of genus g with n punctures. Suppose that g is odd and g + n > 6. We prove that the automorphism group of the complex of curves of N is isomorphic to the mapping class group M of N.
Paracompactness of spaces which have covering properties weaker than paracompactness
Onal, S (Elsevier BV, 2001-07-16)
We prove that (i) a collectionwise normal, orthocompact, theta (m)-refinable, [m, N-0]-submetacompact space is paracompact, (ii) a collectionwise normal, [infinity, m]-paracompact [m, N-0]-submetacompact space is paracompact. This gives a sufficient condition for the paracompactness of para-Lindelof, collectionwise normal spaces.
Commutators, Lefschetz fibrations and the signatures of surface bundles
Endo, H; Korkmaz, Mustafa; Kotschick, D; Ozbagci, B; Stipsicz, A (Elsevier BV, 2002-09-01)
We construct examples of Lefschetz fibrations with prescribed singular fibers. By taking differences of pairs of such fibrations with the same singular fibers, we obtain new examples of surface bundles over surfaces with nonzero signature. From these we derive new upper bounds for the minimal genus of a surface representing a given element in the second homology of a mapping class group.
ELECTRON POLARIZATION IN A PARABOLIC QUANTUM-WELL WITH UNIFORM ELECTRIC-FIELD
ILAIWI, KF; Tomak, Mehmet (1991-01-01)
The polarization of a quantum electron confined in a parabolic quantum well in the presence of a uniform electric field is calculated numerically. We find positive polarization for both ground and the first excited states.
Citation Formats
M. Uğuz, “Moduli space for invariant solutions of Seiberg-Witten equations,” Ph.D. - Doctoral Program, Middle East Technical University, 1999.