Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New dimension reduction technique for brain decoding
Download
index.pdf
Date
2015
Author
Afrasiyabi, Arman
Metadata
Show full item record
Item Usage Stats
249
views
232
downloads
Cite This
A new architecture for dimension reduction, analyzing and decoding the discriminative information, distributed in function Magnetic Resonance Imaging (fMRI) data, is proposed. This architecture called Sparse Temporal Mesh Model (STMM) which consists of three phases with a visualization tool. In phase A, a univariate voxel selection method, based on the assumption that voxels are independent, is used to select the informative voxels among the whole brain voxels. For this purpose, one of feature selection methods namely one way analysis of variance (ANOVA) or mutual information (MI) is employed. Then, in phase B, a multivariate voxel selection method, based on the multivariate form of the brain, known as recursive feature elimination (RFE) is employed. The last phase, phase C, contains two parts. In phase C.1, a local mesh with fix size around each voxel called seed voxel is formed. Next, the relationships, called arc weights, between the seed voxel and the neighbouring voxels are estimated. In phase C.2, ANOVA feature selection method is used to eliminate the unnecessary arc weights. Additionally, a visualization tool known as t Distributed Stochastic Neighbor Embedding (tSNE) is used to analyse the effect of each phase. The results indicate that STMM can successfully use for brain decoding purpose.
Subject Keywords
Brain mapping.
,
Diagnostic imaging.
,
Brain
URI
http://etd.lib.metu.edu.tr/upload/12619422/index.pdf
https://hdl.handle.net/11511/25049
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
An Information theoretic representation of brain connectivity for cognitive state classification using functional magnetic resonance imaging
Önal, Itır; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2013)
In this study, a new method for analyzing and representing the discriminative information, distributed in functional Magnetic Resonance Imaging (fMRI) data, is proposed. For this purpose, a local mesh with varying size is formed around each voxel, called the seed voxel. The relationships among each seed voxel and its neighbors are estimated using a linear regression equation by minimizing the expectation of the squared error. This squared error coming from linear regression is used to calculate various info...
A new algorithm and computation approach for economic dispatch with prohibited operating zones in power systems
Cetinkaya, N; Urkmez, A; Erkmen, İsmet; Yalcinoz, T (2005-01-01)
This paper presents a new algorithm and computation approach to solve the economic load dispatch (ELD) in electrical power systems. We applied a new power formula to solve the LLD problem. If production units cost Curves are represented property then ELD becomes More Correct. In this respect we assumed that production units have prohibited operating zones. Cost curves of the production units are generally accepted as piece-wise quadratic function. The power production is cheaper since we do not use the prod...
Effect of Voxel Selection on Temporal Mesh Model for Brain Decoding
Afrasiyabi, Arman; Onal, Itir; Yarman Vural, Fatoş Tunay (2016-05-19)
In this study, we combine a voxel selection method with temporal mesh model to decode the discriminative information distributed in functional Magnetic Resonance Imaging (fMRI) data. We first employ one way Analysis of Variance (ANOVA) feature selection to select the most informative voxels. Then, we form meshes around selected voxels with their spatial and functional neighbors by employing the Mesh Model with Temporal Measurements (MM-TM). We estimate the arc weights of meshes, which represent the relation...
An Information Theoretic Approach to Classify Cognitive States Using fMRI
Onal, Itir; Ozay, Mete; Firat, Orhan; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-11-13)
In this study, an information theoretic approach is proposed to model brain connectivity during a cognitive processing task, measured by functional Magnetic Resonance Imaging (fMRI). For this purpose, a local mesh of varying size is formed around each voxel. The arc weights of each mesh are estimated using a linear regression model by minimizing the squared error. Then, the optimal mesh size for each sample, that represents the information distribution in the brain, is estimated by minimizing various inform...
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Afrasiyabi, “New dimension reduction technique for brain decoding,” M.S. - Master of Science, Middle East Technical University, 2015.