Discrete symmetries in quantum theory

Taşdan, İsmail Ufuk
In this thesis, one of the most central problems of modern physics, namely the discrete symmetries, is discussed from various perspectives ranging from classical mechanics to relativistic quantum theory. The discrete symmetries, namely charge conjugation (C), parity (P), time reversal (T), which are connected by the so-called CPT Theorem are studied in detail. The anti-particles with a view to matter-anti-matter symmetry is also addressed and the anti-unitarity nature of the time reversal, as well as the CPT, is worked out in detail. Another issue, which have been devoted special attention to, is the CP violation in the context of neutral Kaon mixing and oscillations. Although there have been recent discoveries of CP violation in the framework of other neutral systems, like B and D mesons, this historical problem is taken up because of its simplicity and beauty.


Discrimination of quantum states under local operations and classical communication
Güngör, Özenç; Turgut, Sadi; Department of Physics (2015)
One dimensional molecular potentials are studied by solving the Schrödinger Equation for some well known potentials, such as the deformed Morse, Eckart and the Hua potentials. Parametric generalization of Hamiltonian Hierarchy is introduced. Nikiforov-Uvarov method and SUSYQM with Hamiltonian Hierarchy method is used in the calculations to get energy eigenvalues and the corresponding wave functions exactly.
Quantum decoherence and quantum state diffusion formalism
Dumlu, Cesim Kadri; Turgut, Sadi; Department of Physics (2007)
Foundational problems of quantum theory, regarding the appearance of classicality and the measurement problem are stated and their link to studies of open quantum systems is discussed. This study's main aim is to analyze the main approaches that are employed in the context of open quantum systems. The general form of Markovian master equations are derived by a constructive approach. The Quantum State Diffusion (QSD) formalism is stressed upon as an alternative method to the master equations. Using the Calde...
Quantum Information Approach to Correlations in Many-body Systems
Aksak, Çağan; Turgut, Sadi; Department of Physics (2022-9-21)
Quantum correlations are crucial features in both quantum information theory and many-body physics. Characterization and quantification of quantum correlations have delivered a rich body of work and helped to understand some quantum phenomena. Entanglement is a unique quantum correlation for which it is a resource in many quantum information tasks. Developed for quantification of entanglement, entanglement witness formalism is a remarkable tool in the quantum information toolkit. It can be deployed beyond t...
A Lorentz violating theory: its nonminimal extension in the photon sector
Albayrak, Soner; Turan, İsmail; Department of Physics (2016)
The relentless efforts of the physics community has not yet availed us the solution of how to unify the Quantum Mechanics vith General Relativity, a puzzle that has engaged the minds of the physcists for almost a century. The insufficiency of today's and foreseeable future's technology for a direct reach into the Planck energies at which the fundamental theory, the Quantum Theory of Gravity, lies has lead to the search of the low energy effects of that fundamental Planck level theory irregardless of the det...
Multidimensional quantum tunnelling formulation of oxygen-16 and uranium-238 reaction
Ataol, Murat Tamer; Yılmaz, Osman; Department of Physics (2004)
Multidimensional quantum tunnelling is an important tool that is used in many areas of physics and chemistry. Sub-barrier fusion reactions of heavy-ions are governed by quantum tunnelling. However, the complexity of the structures of heavy-ions does not allow us to use simple one-dimensional tunnelling equations to and the tunnelling probabilities. Instead of this one should consider all the degrees of freedom which affect the phenomenon and accordingly the intrinsic structure or the deformation of the nucl...
Citation Formats
İ. U. Taşdan, “Discrete symmetries in quantum theory,” M.S. - Master of Science, Middle East Technical University, 2015.