Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surface morphology investigation of a biodegradable magnesium alloy
Download
index.pdf
Date
2015
Author
Tahmasebifar, Aydin
Metadata
Show full item record
Item Usage Stats
436
views
205
downloads
Cite This
In this study, the effect of manufacturing conditions (i.e. compaction pressure, sintering temperature and time) on physical, mechanical and electrochemical properties of Mg alloy discs as samples of biomedical implants prepared using powder forming technology were investigated. The main motivation of this study was to achieve the manufacturing of porous and micro-surface textured Mg-based biomedical implants with good mechanical and electrochemical properties. A Box-Behnken and Full Factorial experimental design was used in experimentation. Relative densities of the plates were obtained experimentally. They varied from 69.7±1% to 81.5±4%. According to ANOVA (Analysis of variances) test, manufacturing conditions did not affect the relative density significantly except the compaction pressure level. The bending strength was in the range of 30.3±2 MPa and 53.7±1 MPa. Compaction pressure led to an increase in the bending strength while sintering temperature and time decreased. Electrochemical tests were conducted using Hank’s solution, DMEM (Dulbecco's Modified Eagle's Medium) and 10% FBS (Fetal Bovine Serum)+DMEM. The lowest and the highest corrosion potentials were measured in Hank’s and 10% FBS+DMEM solutions, respectively. Pitting corrosion was detected on the surface of Mg alloy discs. In Hank’s solution, pitting corrosion was observed more than DMEM and 10% FBS+DMEM. The discs with smooth surfaces also showed lower corrosion resistance than the discs with porous and micro-textured surfaces in the presence of FBS. It was concluded that the manufacturing of porous and micro-surface textured Mg based biomedical implant using powder forming process was reasonable due to the convenience of near net shape production with sufficient material properties. Also, the cell culture studies showed that micro texture and roughness positively affected cell adhesion, proliferation and osteogenic activity. AZ91D-Mg alloy plates showed good cytocompatibility with higher cell proliferation compared to control groups at each incubation time period.
Subject Keywords
Materials
,
Biodegradable products.
,
Powder metallurgy.
,
Biomedical materials.
,
Magnesium alloys.
URI
http://etd.lib.metu.edu.tr/upload/12619248/index.pdf
https://hdl.handle.net/11511/25185
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial
Tahmasebifar, Aydin; KAYHAN, Said Murat; Evis, Zafer; Tezcaner, Ayşen; Cinici, Hanifi; Koc, Muammer (2016-12-05)
In this study, the effect of manufacturing conditions (i.e. compaction pressure, sintering temperature and time) on physical, mechanical and electrochemical properties of Mg alloy discs were investigated. The main motivation of this study was to achieve the manufacturing of porous and micro-surface textured Mg-based biomedical implants with good mechanical and electrochemical properties. A Box-Behnken and Full Factorial experimental design was used in experimental investigations. Relative densities of the f...
Manufacturing, mechanical and microstructural characterization of AZ91D magnesium alloy for biomedical applications
Kayhan, Said Murat; Evis, Zafer; Koç, Muammer; Department of Engineering Sciences (2015)
In this study, the microstructural and mechanical properties of the Mg-based implant samples prepared via powder metallurgy route were investigated. Moreover, the biological response of the Mg-based implant samples was investigated. AZ91D Mg alloy discs with smooth and textured surfaces were manufactured under compaction pressures of 25 and 40 MPa at 150⁰C. They were then sintered at 380⁰C for 30 and 150 mins. The microstructural evaluation was conducted through SEM and light microcopy images. As compaction...
Characterization and fatigue behavior of Ti-6Al-4V foams
Aşık, Emin Erkan; Bor, Şakir; Department of Metallurgical and Materials Engineering (2012)
Porous Ti-6Al-4V alloys are widely used in the biomedical applications for hard tissue implantation due to its biocompatibility and elastic modulus being close to that of bone. In this study, porous Ti-6Al-4V alloys were produced with a powder metallurgical process, space holder technique, where magnesium powders were utilized in order to generate porosities in the range of 50 to 70 vol. %. In the productions of Ti-6Al-4V foams, first, the spherical Ti-6Al-4V powders with an average size of 55 μm were mixed...
Production and characterization of porous titanium alloys
Esen, Ziya; Bor, Şakir; Department of Metallurgical and Materials Engineering (2007)
In the present study, production of titanium and Ti6Al4V alloy foams has been investigated using powder metallurgical “space holder technique” in which magnesium powder were utilized to generate porosities in the range 30 to 90 vol. %. Also, sintering of titanium and Ti-6Al-4V alloy powders in loose and compacted condition at various temperatures (850-1250oC) and compaction pressures (120-1125 MPa), respectively, were investigated to elucidate the structure and mechanical properties of the porous cell walls...
Experimental and numerical investigations for mechanical and microstructural characterization of micro-manufactured AZ91D magnesium alloy disks for biomedical applications
Kayhan, Said Murat; TAHMASEBİFAR, Aydin; KOÇ, Muammer; Usta, Yusuf; Tezcaner, Ayşen; Evis, Zafer (2016-03-05)
In this study, the microstructure, mechanical and biological properties of the Mg-based implant samples prepared by the combination of micro-manufacturing and powder metallurgy route were investigated. Porous AZ91D Mg alloy disks with smooth and textured surfaces were manufactured under compaction pressures of 25 and 40 MPa at 150 degrees C and under sintering conditions of 380 degrees C for 30 and 150 min. The phase changes and microstructure were analyzed using X-ray diffraction (XRD), scanning electron (...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Tahmasebifar, “Surface morphology investigation of a biodegradable magnesium alloy,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.